Facebook Instagram Youtube Twitter

Maillechort – Densité – Résistance – Dureté – Point de fusion

À propos du maillechort

Le maillechort, également connu sous le nom d’argent allemand, de laiton nickelé ou d’alpaga, est un alliage de cuivre avec du nickel et souvent du zinc. L’alliage de cuivre UNS C75700 nickel argent 65-12 a une bonne résistance à la corrosion et au ternissement, et une formabilité élevée. Le maillechort est nommé en raison de son aspect argenté, mais il ne contient pas d’argent élémentaire à moins qu’il ne soit plaqué. 

maillechort propriétés densité résistance prix

Résumé

Nom Argent nickel
Phase à STP solide
Densité 8690kg/m3
Résistance à la traction ultime 400 MPa
Limite d’élasticité 170 MPa
Module de Young 117 GPa
Dureté Brinell 90 BHN
Point de fusion 1040°C
Conductivité thermique 40W/mK
Capacité thermique 377 J/g·K
Prix 35 $/kg

Densité du maillechort

Les densités typiques de diverses substances sont à la pression atmosphérique. La densité  est définie comme la  masse par unité de volume. C’est une  propriété intensive, qui est définie mathématiquement comme la masse divisée par le volume: ρ = m/V

En d’autres termes, la densité (ρ) d’une substance est la masse totale (m) de cette substance divisée par le volume total (V) occupé par cette substance. L’unité SI standard est le kilogramme par mètre cube (kg/m3). L’unité anglaise standard est la masse de livres par pied cube (lbm/ft3).

La densité du maillechort est de 8690 kg/m3.

Exemple: Densité

Calculez la hauteur d’un cube en maillechort, qui pèse une tonne métrique.

Solution:

La densité  est définie comme la  masse par unité de volume . Il est mathématiquement défini comme la masse divisée par le volume: ρ = m/V

Comme le volume d’un cube est la troisième puissance de ses côtés (V = a3), la hauteur de ce cube peut être calculée:

densité du matériau - équation

La hauteur de ce cube est alors a = 0,486 m.

Densité des matériaux

Tableau des matériaux - Densité des matériaux

Propriétés mécaniques du maillechort

Force du maillechort

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine.

La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique. Pour la contrainte de traction, la capacité d’un matériau ou d’une structure à supporter des charges tendant à s’allonger est appelée résistance ultime à la traction (UTS). La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. En cas de contrainte de traction d’une barre uniforme (courbe contrainte-déformation), la loi de Hooke décrit le comportement d’une barre dans la région élastique. Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction.

Voir aussi: Résistance des matériaux

Résistance à la traction ultime du maillechort

La résistance à la traction ultime du maillechort est de 400 MPa.

Limite d’élasticité du maillechort

La limite d’élasticité du maillechort est de 170 MPa.

Module de Young du maillechort

Le module de Young du maillechort est de 117 GPa.

Dureté du maillechort

En science des matériaux, la dureté est la capacité à résister à  l’indentation de surface (déformation plastique localisée) et  aux rayuresLe test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un  pénétrateur sphérique dur est forcé sous une charge spécifique dans la surface du métal à tester.

L’  indice de dureté Brinell (HB) est la charge divisée par la surface de l’indentation. Le diamètre de l’empreinte est mesuré avec un microscope à échelle superposée. Le nombre de dureté Brinell est calculé à partir de l’équation:

indice de dureté Brinell - définition

La dureté Brinell du maillechort est d’environ 90 BHN (converti).

Voir aussi: Dureté des matériaux

Exemple: Force

Supposons une tige en plastique, qui est faite de maillechort. Cette tige en plastique a une section transversale de 1 cm2. Calculez la force de traction nécessaire pour atteindre la résistance ultime à la traction de ce matériau, soit: UTS = 400 MPa.

Solution:

La contrainte (σ)  peut être assimilée à la charge par unité de surface ou à la force (F) appliquée par section transversale (A) perpendiculaire à la force comme suit:

résistance du matériau - équation

par conséquent, la force de traction nécessaire pour atteindre la résistance à la traction ultime est:

F = UTS x A = 400 x 106 x 0,0001 = 40 000 N

La résistance des matériaux

Tableau des matériaux - Résistance des matériaux

Élasticité des matériaux

Tableau des matériaux - Élasticité des matériaux

Dureté des matériaux

Tableau des matériaux - Dureté des matériaux 

Propriétés thermiques du maillechort

Maillechort – Point de fusion

Le point de fusion du maillechort est de 1040°C.

Notez que ces points sont associés à la pression atmosphérique standard. En général, la fusion est un  changement de phase d’une substance de la phase solide à la phase liquide. Le  point de fusion  d’une substance est la température à laquelle ce changement de phase se produit. Le point de fusion définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre. Pour divers composés chimiques et alliages, il est difficile de définir le point de fusion, car il s’agit généralement d’un mélange de divers éléments chimiques.

Maillechort – Conductivité Thermique

La conductivité thermique du maillechort est de 40 W/(m·K).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductivité thermique, k (ou λ), mesurée en W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par  conduction. Notez que  la loi de Fourier  s’applique à toute matière, quel que soit son état (solide, liquide ou gazeux), par conséquent, elle est également définie pour les liquides et les gaz.

La conductivité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire  k = k (T). Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

Maillechort – Chaleur spécifique

La chaleur spécifique du maillechort est de 377  J/g K.

La chaleur spécifique, ou capacité thermique spécifique,  est une propriété liée à l’énergie interne  très importante en thermodynamique. Les propriétés intensives cv et cp sont définies pour des substances compressibles pures et simples comme des dérivées partielles de l’  énergie interne u(T, v) et de  l’ enthalpie h(T, p) , respectivement: 

où les indices v et p désignent les variables maintenues fixes lors de la différenciation. Les propriétés cv et cp sont appelées chaleurs spécifiques (ou  capacités calorifiques) car, dans certaines conditions particulières, elles relient le changement de température d’un système à la quantité d’énergie ajoutée par transfert de chaleur. Leurs unités SI sont  J/kg K  ou  J/mol K.

Exemple: Calcul du transfert de chaleur

Maillechort - Conductivité ThermiqueLa conductivité thermique est définie comme la quantité de chaleur (en watts) transférée à travers une surface carrée de matériau d’une épaisseur donnée (en mètres) en raison d’une différence de température. Plus la conductivité thermique du matériau est faible, plus la capacité du matériau à résister au transfert de chaleur est grande.

Calculer le taux de  flux de chaleur à  travers un mur de 3 mx 10 m de surface (A = 30 m2). Le mur a une épaisseur de 15 cm (L 1 ) et est en maillechort avec une conductivité thermique  de k1 = 40 W/mK (mauvais isolant thermique). Supposons que les températures intérieure et extérieure  sont de 22°C et -8°C, et que les  coefficients de transfert de chaleur par convection  sur les côtés intérieur et extérieur sont h1 = 10 W/m2K et h2 = 30 W/m2K, respectivement. A noter que ces coefficients de convection dépendent fortement notamment des conditions ambiantes et intérieures (vent, humidité, etc.).

Calculez le flux de chaleur (perte de chaleur) à travers ce mur.

Solution:

Comme cela a été écrit, de nombreux processus de transfert de chaleur impliquent des systèmes composites et impliquent même une combinaison de  conduction  et  de convection. Avec ces systèmes composites, il est souvent pratique de travailler avec un  coefficient de transfert de chaleur globalappelé  facteur  U. Le facteur U est défini par une expression analogue à  la loi de refroidissement de Newton:

Calcul du transfert de chaleur - Loi de refroidissement de Newton

Le  coefficient de transfert de chaleur global  est lié à la  résistance thermique totale et dépend de la géométrie du problème.

En supposant un transfert de chaleur unidimensionnel à travers la paroi plane et sans tenir compte du rayonnement, le  coefficient de transfert de chaleur global  peut être calculé comme suit:

Calcul du transfert de chaleur - Facteur U

Le coefficient de transfert thermique global  est alors: U = 1 / (1/10 + 0,15/40 + 1/30) = 7,29 W/m2K

Le flux de chaleur peut alors être calculé simplement comme suit: q = 7,29 [W/m2K] x 30 [K] = 218,85 W/m2

La perte totale de chaleur à travers ce mur sera de: qperte  = q . A = 218,85 [W/m2] x 30 [m2] = 65065,35 W

Point de fusion des matériaux

Tableau des matériaux - Point de fusion

Conductivité thermique des matériaux

Tableau des matériaux - Conductivité thermique

Capacité calorifique des matériaux

Tableau des matériaux - Capacité calorifique