Facebook Instagram Youtube Twitter

De qué materiales están hechos los aviones – Aleaciones ligeras – Definición

¿De qué materiales están hechos los aviones? Los aviones están hechos de metales ligeros, que son el principal material de construcción de la industria aeronáutica durante la mayor parte de su historia. Aproximadamente el 70% de las estructuras de las aeronaves civiles comerciales están hechas de aleaciones de aluminio, y sin el aluminio la aviación civil no sería económicamente viable.

Aleación de titanio

Las aleaciones ligeras se utilizan ampliamente en aplicaciones aeroespaciales, automotrices, arquitectónicas, litográficas, de embalaje, eléctricas y electrónicas. Son el principal material de construcción de la industria aeronáutica a lo largo de la mayor parte de su historia. Aproximadamente el 70% de las estructuras de las aeronaves civiles comerciales están hechas de aleaciones de aluminio, y sin el aluminio la aviación civil no sería económicamente viable. Un kilogramo de metal ahorrado en el diseño y la construcción de una aeronave puede resultar en un importante ahorro de peso en los costos de construcción y en los requisitos totales de combustible.

En ocasiones, se utilizan otros metales, como el acero y el titanio, para construir aviones. Sin embargo, el acero es pesado, por lo que no se usa demasiado. El titanio es casi tan fuerte como el acero, tiene un peso medio, es resistente al calor y resistente a la corrosión. Por ejemplo, el Lockheed SR-71 Blackbird, el avión propulsado a chorro más rápido del mundo, está hecho de titanio. En algunos casos, estas aleaciones ligeras pueden ser reemplazadas por materiales compuestos, especialmente aquellos hechos de fibras de vidrio, fibras de carbono y Kevlar. Estos materiales compuestos son fuertes, pero pueden pesar la mitad que el aluminio. Estos materiales ligeros y personalizables son cada vez más populares. Más de la mitad de los materiales utilizados para fabricar el Boeing 787 Dreamliner son compuestos.

Las aleaciones ligeras a base de metal también se pueden usar para piezas que operan a altas velocidades y, por lo tanto, deben ser livianas para minimizar las fuerzas de inercia. Otras aplicaciones comerciales incluyen herramientas de mano, computadoras portátiles, equipaje y escaleras, automóviles (por ejemplo, volantes y columnas, armazones de asientos, cajas de transmisión).

aleaciones de metales ligeros - composición

Tipos de aleaciones ligeras

Como se escribió, el magnesio, el aluminio y el titanio son metales ligeros de gran importancia comercial. Estos tres metales y sus aleaciones comprenden la mayor parte de los materiales metálicos de alta relación resistencia / peso utilizados en los sistemas industriales. El aluminio es el más versátil de estos materiales y el titanio es el más resistente a la corrosión con una resistencia muy alta, mientras que el magnesio tiene la densidad más baja. Además de estos metales, el berilio también es un metal liviano de alta resistencia con un módulo elástico muy alto (303 GPa) que está encontrando un uso cada vez mayor como material estructural en vehículos aeroespaciales. El módulo de elasticidad del berilio es casi tres veces mayor que el del titanio.

  • Aleaciones de aluminio. Las propiedades mecánicas de las aleaciones de aluminio dependen en gran medida de su composición de fase y microestructura. Se puede lograr una alta resistencia, entre otras cosas, mediante la introducción de una fracción de gran volumen de partículas finas de segunda fase distribuidas homogéneamente y mediante un refinamiento del tamaño de grano. En general, las aleaciones de aluminio se caracterizan por una densidad relativamente baja (2,7 g/cm3 en comparación con 7,9 g/cm3 para acero), alta conductividad eléctrica y térmica y resistencia a la corrosión en algunos entornos comunes, incluida la atmósfera ambiental. La principal limitación del aluminio es su baja temperatura de fusión (660°C), que restringe la temperatura máxima a la que se puede utilizar. Para la producción general, las aleaciones de las series 5000 y 6000 proporcionan una resistencia adecuada combinada con una buena resistencia a la corrosión, alta tenacidad y facilidad de soldadura. El aluminio y sus aleaciones se utilizan ampliamente en aplicaciones aeroespaciales, automotrices, arquitectónicas, litográficas, de embalaje, eléctricas y electrónicas.
  • Aleaciones de magnesio. Las aleaciones de magnesio son mezclas de magnesio y otros metales de aleación, generalmente aluminio, zinc, silicio, manganeso, cobre y circonio. Dado que la característica más destacada del magnesio es su densidad, 1,7 g/cm3, sus aleaciones se utilizan donde el peso ligero es una consideración importante (por ejemplo, en componentes de aeronaves). El magnesio tiene el punto de fusión más bajo (923 K (1202°F)) de todos los metales alcalinotérreos. Las aleaciones de magnesio se utilizan normalmente como aleaciones de fundición. A pesar de la naturaleza reactiva del polvo de magnesio puro, el magnesio metálico y sus aleaciones tienen buena resistencia a la corrosión. Debemos agregar que el magnesio puro es altamente inflamable, especialmente cuando se pulveriza o se afeita en tiras delgadas, aunque es difícil de encender en masa o a granel. Produce una luz blanca intensa, brillante cuando arde. Las temperaturas de la llama del magnesio y algunas aleaciones de magnesio pueden alcanzar los 3100°C.
  • Aleaciones de titanio. Las aleaciones de titanio son metales que contienen una mezcla de titanio y otros elementos químicos. Estas aleaciones tienen una resistencia a la tracción y una tenacidad muy altas (incluso a temperaturas extremas). Son livianos, tienen una extraordinaria resistencia a la corrosión y la capacidad de soportar temperaturas extremas. Aunque el titanio «comercialmente puro» tiene propiedades mecánicas aceptables y se ha utilizado para implantes ortopédicos y dentales, para la mayoría de las aplicaciones el titanio se alea con pequeñas cantidades de aluminio y vanadio, típicamente 6% y 4% respectivamente, en peso. Esta mezcla tiene una solubilidad sólida que varía drásticamente con la temperatura, lo que le permite experimentar un fortalecimiento por precipitación.

Densidad de aleaciones y metales ligeros

La densidad de una aleación de aluminio típica es de 2,7 g/cm3 (aleación 6061).

La densidad de una aleación de magnesio típica es de 1,8 g/cm3 (Elektron 21).

La densidad de una aleación de titanio típica es de 4,43 g/cm3 (Ti-6Al-4V).

Resistencia de aleaciones y metales ligeros

En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas o deformaciones plásticas.

Resistencia a la tracción

La resistencia máxima a la tracción de la aleación de aluminio 6061 depende en gran medida del temple del material, pero para el temple T6 es de aproximadamente 290 MPa.

La resistencia máxima a la tracción de Elektron 21 – UNS M12310 es de aproximadamente 280 MPa.

La máxima resistencia a la tracción de Ti-6Al-4V – aleación de titanio de grado 5 es de aproximadamente 1170 MPa.

Resistencia a la fluencia - Resistencia máxima a la tracción - Tabla de materialesLa máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación. Esto corresponde a la tensión máxima que puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva de tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores, como la preparación de la muestra, temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.

Límite de elasticidad

El límite elástico de la aleación de aluminio 6061 depende en gran medida del temple del material, pero para el temple T6 es de unos 240 MPa.

El límite elástico de Elektron 21 – UNS M12310 es de aproximadamente 145 MPa.

El límite elástico de Ti-6Al-4V: la aleación de titanio de grado 5 es de aproximadamente 1100 MPa.

El  punto de fluencia  es el punto en una  curva de tensión-deformación  que indica el límite del comportamiento elástico y el comportamiento plástico inicial. Límite de elasticidad es la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica). Antes del límite elástico, el material se deformará elásticamente y volverá a su forma original cuando se elimine la tensión aplicada. Una vez superado el límite elástico, una parte de la deformación será permanente e irreversible. Algunos aceros y otros materiales exhiben un comportamiento denominado fenómeno de límite elástico. Los límites de elasticidad varían de 35 MPa para un aluminio de baja resistencia a más de 1400 MPa para aceros de muy alta resistencia.

Módulo de Young

El módulo de Young de la aleación de aluminio 6061 es de aproximadamente 69 GPa.

El módulo de Young de Elektron 21 – UNS M12310 es de aproximadamente 45 GPa.

El módulo de Young de Ti-6Al-4V – aleación de titanio de grado 5 es de aproximadamente 114 GPa.

El módulo de Young es el módulo elástico para es fuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta un esfuerzo limitante, un cuerpo podrá recuperar sus dimensiones al retirar la carga. Las tensiones aplicadas hacen que los átomos de un cristal se muevan desde su posición de equilibrio. Todos los átomos se desplazan en la misma cantidad y aún mantienen su geometría relativa. Cuando se eliminan las tensiones, todos los átomos vuelven a sus posiciones originales y no se produce ninguna deformación permanente. Según la ley de Hooke, la tensión es proporcional a la deformación (en la región elástica) y la pendiente es el módulo de Young. El módulo de Young es igual a la tensión longitudinal dividida por la deformación.

 

References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. DOE Fundamentals Handbook, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: entender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Vea arriba:
Aleaciones ligeras

Esperamos que este artículo, De qué materiales están hechos los aviones: aleaciones ligeras , lo ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.