Acerca del hierro gris
El hierro fundido gris es el tipo de hierro más antiguo y común que existe y probablemente lo que la mayoría de la gente piensa cuando oye el término «hierro fundido». Los contenidos de carbono y silicio de las fundiciones grises varían entre 2,5 y 4,0% en peso y 1,0 y 3,0% en peso, respectivamente.
La fundición gris se caracteriza por su microestructura grafítica , que provoca que las fracturas del material tengan un aspecto gris . Esto se debe a la presencia de grafito en su composición. En hierro fundido gris, el grafito se forma como escamas, adquiriendo una geometría tridimensional.
El hierro fundido gris tiene menos resistencia a la tracción y resistencia a los golpes que el acero, pero su resistencia a la compresión es comparable al acero con bajo y medio carbono. El hierro fundido gris tiene buena conductividad térmica y capacidad calorífica específica, por lo que se usa a menudo en utensilios de cocina y rotores de freno.
Resumen
Nombre | Hierro gris |
Fase en STP | sólido |
Densidad | 7150 kg / m3 |
Resistencia a la tracción | 395 MPa |
Límite de elastacidad | N / A |
Módulo de Young | 124 GPa |
Dureza Brinell | 235 BHN |
Punto de fusion | 1260 ° C |
Conductividad térmica | 53 W / mK |
Capacidad calorífica | 460 J / g K |
Precio | 1,2 $ / kg |
Densidad del hierro gris
En palabras, la densidad (ρ) de una sustancia es la masa total (m) de esa sustancia dividida por el volumen total (V) ocupado por esa sustancia. La unidad estándar del SI es kilogramos por metro cúbico ( kg / m 3 ). La unidad de inglés estándar es libras de masa por pie cúbico ( lbm / ft 3 ).
La densidad del hierro gris es 7150 kg / m 3 .
Ejemplo: densidad
Calcula la altura de un cubo hecho de hierro gris, que pesa una tonelada métrica.
Solución:
La densidad se define como la masa por unidad de volumen . Se define matemáticamente como masa dividida por volumen:
ρ = m / V
Como el volumen de un cubo es la tercera potencia de sus lados (V = a 3 ), la altura de este cubo se puede calcular:
La altura de este cubo es entonces a = 0,519 m .
Densidad de materiales
Propiedades mecánicas del hierro gris
Los materiales se eligen con frecuencia para diversas aplicaciones porque tienen combinaciones deseables de características mecánicas. Para aplicaciones estructurales, las propiedades de los materiales son cruciales y los ingenieros deben tenerlas en cuenta.
Resistencia del hierro gris
En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.
Resistencia a la tracción
La resistencia máxima a la tracción del hierro gris (ASTM A48 Clase 40) es 295 MPa.
La máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación . Esto corresponde a la tensión máximaque puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva de tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores, como la preparación de la muestra,temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.
Módulo de Young
El módulo de Young del hierro gris (ASTM A48 Clase 40) es 124 GPa.
El módulo de Young es el módulo elástico para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta un esfuerzo limitante, un cuerpo podrá recuperar sus dimensiones al retirar la carga. Las tensiones aplicadas hacen que los átomos de un cristal se muevan desde su posición de equilibrio. Todos los átomos se desplazan en la misma cantidad y aún mantienen su geometría relativa. Cuando se eliminan las tensiones, todos los átomos vuelven a sus posiciones originales y no se produce ninguna deformación permanente. Según la ley de Hooke , la tensión es proporcional a la deformación (en la región elástica) y la pendiente es el módulo de Young.. El módulo de Young es igual a la tensión longitudinal dividida por la deformación.
Dureza del hierro fundido gris – ASTM A48 Clase 40
La dureza Brinell del hierro gris (ASTM A48 Clase 40) es de aproximadamente 235 MPa.
En la ciencia de los materiales, la dureza es la capacidad de resistir la hendidura de la superficie ( deformación plástica localizada ) y el rayado . La dureza es probablemente la propiedad del material menos definida porque puede indicar resistencia al rayado, resistencia a la abrasión, resistencia a la indentación o incluso resistencia a la deformación o deformación plástica localizada. La dureza es importante desde el punto de vista de la ingeniería porque la resistencia al desgaste por fricción o erosión por vapor, aceite y agua generalmente aumenta con la dureza.
La prueba de dureza Brinell es una de las pruebas de dureza por indentación, que se ha desarrollado para las pruebas de dureza. En las pruebas Brinell, se fuerza un penetrador esférico durobajo una carga específica en la superficie del metal que se va a probar. La prueba típica utiliza una bola de acero endurecido de 10 mm (0,39 pulg.) De diámetro como penetrador con una fuerza de 3000 kgf (29,42 kN; 6,614 lbf). La carga se mantiene constante durante un tiempo determinado (entre 10 y 30 s). Para materiales más blandos, se usa una fuerza menor; para materiales más duros, una bola de carburo de tungsteno se sustituye por la bola de acero.
La prueba proporciona resultados numéricos para cuantificar la dureza de un material, que se expresa mediante el número de dureza Brinell – HB . El número de dureza Brinell está designado por las normas de prueba más comúnmente utilizadas (ASTM E10-14 [2] e ISO 6506-1: 2005) como HBW (H de dureza, B de Brinell y W del material del penetrador, tungsteno ( wolfram) carburo). En las normas anteriores se utilizaba HB o HBS para referirse a las medidas realizadas con penetradores de acero.
El número de dureza Brinell (HB) es la carga dividida por el área de la superficie de la muesca. El diámetro de la impresión se mide con un microscopio con una escala superpuesta. El número de dureza Brinell se calcula a partir de la ecuación:
Existe una variedad de métodos de prueba de uso común (por ejemplo, Brinell, Knoop , Vickers y Rockwell ). Hay tablas disponibles que correlacionan los números de dureza de los diferentes métodos de prueba donde la correlación es aplicable. En todas las escalas, un número de dureza alto representa un metal duro.
Ejemplo: resistencia
Suponga una varilla de plástico, que está hecha de hierro gris. Esta varilla de plástico tiene un área de sección transversal de 1 cm 2 . Calcule la fuerza de tracción necesaria para lograr la resistencia máxima a la tracción de este material, que es: UTS = 295 MPa.
Solución:
La tensión (σ) se puede equiparar a la carga por unidad de área o la fuerza (F) aplicada por área de sección transversal (A) perpendicular a la fuerza como:
por lo tanto, la fuerza de tracción necesaria para lograr la máxima resistencia a la tracción es:
F = UTS x A = 295 x 10 6 x 0,0001 = 29 500 N
Propiedades térmicas del hierro gris
Las propiedades térmicas de los materiales se refieren a la respuesta de los materiales a los cambios de thermodynamics/thermodynamic-properties/what-is-temperature-physics/»>temperatura y a la aplicación de calor . A medida que un sólido absorbe thermodynamics/what-is-energy-physics/»>energía en forma de calor, su temperatura aumenta y sus dimensiones aumentan. Pero los diferentes materiales reaccionan a la aplicación de calor de manera diferente .
La capacidad calorífica , la expansión térmica y la conductividad térmica son propiedades que a menudo son críticas en el uso práctico de sólidos.
Punto de fusión del hierro gris gris
El punto de fusión del hierro gris es de alrededor de 1260 ° C.
En general, la fusión es un cambio de fase de una sustancia de la fase sólida a la líquida. El punto de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El punto de fusión también define una condición en la que el sólido y el líquido pueden existir en equilibrio.
Conductividad térmica del hierro gris
La conductividad térmica del hierro gris es 53 W / (mK).
Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada conductividad térmica , k (o λ), medida en W / mK . Es una medida de la capacidad de una sustancia para transferir calor a través de un material por conducción . Tenga en cuenta que la ley de Fourier se aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo que también se define para líquidos y gases.
La conductividad térmica de la mayoría de los líquidos y sólidos varía con la temperatura. Para los vapores, también depende de la presión. En general:
La mayoría de los materiales son casi homogéneos, por lo que normalmente podemos escribir k = k (T) . Se asocian definiciones similares con las conductividades térmicas en las direcciones y y z (ky, kz), pero para un material isótropo, la conductividad térmica es independiente de la dirección de transferencia, kx = ky = kz = k.
Ejemplo: cálculo de transferencia de calor
La conductividad térmica se define como la cantidad de calor (en vatios) transferida a través de un área cuadrada de material de un espesor determinado (en metros) debido a una diferencia de temperatura. Cuanto menor sea la conductividad térmica del material, mayor será la capacidad del material para resistir la transferencia de calor.
Calcule la tasa de flujo de calor a través de una pared de 3 mx 10 m de área (A = 30 m 2 ). La pared tiene 15 cm de espesor (L 1 ) y está hecha de Hierro Gris con una conductividad térmica de k 1 = 53 W / mK (mal aislante térmico). Suponga que las temperaturas interior y exterior son 22 ° C y -8 ° C, y los coeficientes de transferencia de calor por convección en los lados interior y exterior son h 1 = 10 W / m 2 K y h 2 = 30 W / m 2 K, respectivamente. Tenga en cuenta que estos coeficientes de convección dependen en gran medida, especialmente, de las condiciones ambientales e interiores (viento, humedad, etc.).
Calcule el flujo de calor ( pérdida de calor ) a través de esta pared.
Solución:
Como se escribió, muchos de los procesos de transferencia de calor involucran sistemas compuestos e incluso involucran una combinación de conducción y convección . Con estos sistemas compuestos, a menudo es conveniente trabajar con un coeficiente de transferencia de calor en general , conocido como un factor U . El factor U se define mediante una expresión análoga a la ley de enfriamiento de Newton :
El coeficiente de transferencia de calor general está relacionado con la resistencia térmica total y depende de la geometría del problema.
Suponiendo una transferencia de calor unidimensional a través de la pared plana y sin tener en cuenta la radiación, el coeficiente de transferencia de calor general se puede calcular como:
El coeficiente de transferencia de calor total es entonces: U = 1 / (1/10 + 0,15 / 53 + 1/30) = 7,34 W / m 2 K
El flujo de calor se puede calcular entonces simplemente como: q = 7,34 [W / m 2 K] x 30 [K] = 220,32 W / m 2
La pérdida total de calor a través de esta pared será: q pérdida = q. A = 220,32 [W / m 2 ] x 30 [m 2 ] = 6609,7 W