Facebook Instagram Youtube Twitter

Vidrio – Densidad – Capacidad calorífica – Conductividad térmica

Acerca del vidrio

El vidrio es un sólido amorfo no cristalino, a menudo transparente. Los vidrios tienen un uso práctico, tecnológico y decorativo generalizado, por ejemplo, en cristales, vajillas y ópticas. Dado que el vidrio es un sólido amorfo (no cristalino), generalmente se forma mediante la solidificación de una masa fundida sin cristalización. El vidrio se fabrica enfriando ingredientes fundidos como la arena de sílice con suficiente rapidez para evitar la formación de cristales visibles. En algunos libros antiguos, el término se ha utilizado como sinónimo de vidrio. Hoy en día, «sólido vítreo» o «sólido amorfo» se considera el concepto general, y el vidrio el caso más especial: el vidrio es un sólido amorfo que exhibe una transición vítrea. El vidrio que se encuentra con mayor frecuencia es el vidrio de silicato, que se compone principalmente de sílice o dióxido de silicio, SiO2.propiedades de vidrio densidad resistencia precio

Resumen

Nombre Vidrio
Fase en STP sólido
Densidad 2500 kg / m3
Resistencia a la tracción 7 MPa
Límite de elastacidad N / A
Módulo de Young 80 GPa
Dureza Brinell 1550 BHN
Punto de fusion 1700 ° C
Conductividad térmica 1,05 W / mK
Capacidad calorífica 840 J / g K
Precio 5 $ / kg

Densidad del vidrio

Las densidades típicas de varias sustancias se encuentran a presión atmosférica. La densidad  se define como la  masa por unidad de volumen . Es una  propiedad intensiva , que se define matemáticamente como masa dividida por volumen:  ρ = m / V

En palabras, la densidad (ρ) de una sustancia es la masa total (m) de esa sustancia dividida por el volumen total (V) ocupado por esa sustancia. La unidad estándar del SI es  kilogramos por metro cúbico  ( kg / m 3 ). La unidad de inglés estándar es  libras de masa por pie cúbico  ( lbm / ft 3 ).

La densidad del vidrio es de 2500 kg / m 3 .

Ejemplo: densidad

Calcula la altura de un cubo hecho de vidrio, que pesa una tonelada métrica.

Solución:

La densidad  se define como la  masa por unidad de volumen . Se define matemáticamente como masa dividida por volumen: ρ = m / V

Como el volumen de un cubo es la tercera potencia de sus lados (V = a 3 ), la altura de este cubo se puede calcular:

densidad del material - ecuación

La altura de este cubo es entonces a = 0,737 m .

Densidad de materiales

Tabla de materiales - Densidad de materiales

Propiedades mecánicas del vidrio

Resistencia del vidrio

En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. Al diseñar estructuras y máquinas, es importante considerar estos factores, a fin de que el material seleccionado tenga la resistencia adecuada para resistir las cargas o fuerzas aplicadas y conservar su forma original.

La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas. Para la tensión de tracción, la capacidad de un material o estructura para soportar cargas que tienden a alargarse se conoce como resistencia máxima a la tracción (UTS). El límite elástico o límite elástico es la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica). En caso de tensión de tensión de una barra uniforme (curva tensión-deformación), la  ley de Hooke describe el comportamiento de una barra en la región elástica. El módulo de elasticidad de Young es el módulo de elasticidad para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción.

Ver también: Resistencia de los materiales

Máxima resistencia a la tracción del vidrio

La resistencia máxima a la tracción del vidrio es de 7 MPa.

Límite de elastacidad del vidrio

El límite elástico del vidrio  es N / A.

Módulo de Young del vidrio

El módulo de elasticidad de Young del vidrio es de 80 MPa.

Dureza del vidrio

En la ciencia de los materiales, la  dureza  es la capacidad de resistir  la hendidura de la superficie  ( deformación plástica localizada ) y el  rayado . La prueba de dureza Brinell  es una de las pruebas de dureza por indentación, que se ha desarrollado para las pruebas de dureza. En las pruebas Brinell, se fuerza un penetrador esférico duro  bajo una carga específica en la superficie del metal que se va a probar.

El  número de dureza Brinell  (HB) es la carga dividida por el área de la superficie de la muesca. El diámetro de la impresión se mide con un microscopio con una escala superpuesta. El número de dureza Brinell se calcula a partir de la ecuación:

Número de dureza Brinell - Definición

La dureza Brinell del vidrio es de aproximadamente 1550 BHN (convertidos).

Ver también: dureza de materiales

Ejemplo: resistencia

Suponga una varilla de plástico, que está hecha de vidrio. Esta varilla de plástico tiene un área de sección transversal de 1 cm 2 . Calcule la fuerza de tracción necesaria para lograr la resistencia máxima a la tracción de este material, que es: UTS = 7 MPa.

Solución:

La tensión (σ)  se puede equiparar a la carga por unidad de área o la fuerza (F) aplicada por área de sección transversal (A) perpendicular a la fuerza como:

resistencia del material - ecuación

por lo tanto, la fuerza de tracción necesaria para lograr la máxima resistencia a la tracción es:

F = UTS x A = 7 x 10 6 x 0,0001 = 700 N

Resistencia de materiales

Tabla de materiales: resistencia de los materiales

Elasticidad de los materiales

Tabla de materiales: elasticidad de los materiales

Dureza de los materiales

Tabla de materiales: dureza de los materiales 

Propiedades térmicas del vidrio

Vidrio – Punto de fusión

Punto de fusión de vidrio es 1700 ° C .

Tenga en cuenta que estos puntos están asociados con la presión atmosférica estándar. En general, la  fusión  es un  cambio  de fase de una sustancia de la fase sólida a la líquida. El  punto  de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El  punto de fusión  también define una condición en la que el sólido y el líquido pueden existir en equilibrio. Para varios compuestos químicos y aleaciones, es difícil definir el punto de fusión, ya que generalmente son una mezcla de varios elementos químicos.

Vidrio – Conductividad térmica

La conductividad térmica del vidrio  es  1,05 W / (m · K) .

Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada  conductividad térmica , k (o λ), medida en  W / mK . Es una medida de la capacidad de una sustancia para transferir calor a través de un material por  conducción . Tenga en cuenta que  la ley de Fourier se  aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo que también se define para líquidos y gases.

La  conductividad térmica  de la mayoría de los líquidos y sólidos varía con la temperatura. Para los vapores, también depende de la presión. En general:

conductividad térmica - definición

La mayoría de los materiales son casi homogéneos, por lo que normalmente podemos escribir  k = k (T) . Se asocian definiciones similares con las conductividades térmicas en las direcciones y y z (ky, kz), pero para un material isótropo, la conductividad térmica es independiente de la dirección de transferencia, kx = ky = kz = k.

Vidrio – Calor específico

Calor específico del vidrio es 840 J / g K .

El calor específico, o capacidad calorífica específica,  es una propiedad relacionada con la energía interna  que es muy importante en termodinámica. Las  propiedades intensivas  v  y  p  se definen para sustancias compresibles simples puras como derivadas parciales de la  energía interna  u (T, v)  y la  entalpía  h (T, p) , respectivamente: 

donde los subíndices  v  y  p  denotan las variables que se mantienen fijas durante la diferenciación. Las propiedades  v  y  p  se denominan  calores específicos  (o  capacidades caloríficas ) porque, en determinadas condiciones especiales, relacionan el cambio de temperatura de un sistema con la cantidad de energía añadida por la transferencia de calor. Sus unidades SI son  J / kg K  o  J / mol K .

Ejemplo: cálculo de transferencia de calor

Vidrio - Conductividad térmicaLa conductividad térmica se define como la cantidad de calor (en vatios) transferida a través de un área cuadrada de material de un espesor determinado (en metros) debido a una diferencia de temperatura. Cuanto menor sea la conductividad térmica del material, mayor será la capacidad del material para resistir la transferencia de calor.

Calcule la tasa de flujo de  calor a  través de una pared de 3 mx 10 m de área (A = 30 m 2 ). La pared tiene 15 cm de espesor (L 1 ) y está hecha de Vidrio con una conductividad térmica  de k 1 = 1,05 W / mK (mal aislante térmico). Suponga que las temperaturas interior y exterior  son 22 ° C y -8 ° C, y los  coeficientes de transferencia de calor por convección  en los lados interior y exterior son h 1  = 10 W / m 2 K y h 2  = 30 W / m 2 K, respectivamente. Tenga en cuenta que estos coeficientes de convección dependen en gran medida, especialmente, de las condiciones ambientales e interiores (viento, humedad, etc.).

Calcule el flujo de calor ( pérdida de calor ) a través de esta pared.

Solución:

Como se escribió, muchos de los procesos de transferencia de calor involucran sistemas compuestos e incluso involucran una combinación de  conducción  y  convección . Con estos sistemas compuestos, a menudo es conveniente trabajar con un  coeficiente de transferencia de calor en general ,  conocido como un  factor U . El factor U se define mediante una expresión análoga a  la ley de enfriamiento de Newton :

Cálculo de la transferencia de calor: ley de enfriamiento de Newton

El  coeficiente de transferencia de calor general  está relacionado con la  resistencia térmica total  y depende de la geometría del problema.

Suponiendo una transferencia de calor unidimensional a través de la pared plana y sin tener en cuenta la radiación, el  coeficiente de transferencia de calor general  se puede calcular como:

Cálculo de transferencia de calor - factor U

El coeficiente de transferencia de calor general  es entonces: U = 1 / (1/10 + 0,15 / 1,05 + 1/30) = 3,62 W / m 2 K

El flujo de calor se puede calcular entonces simplemente como: q = 3,62 [W / m 2 K] x 30 [K] = 108,62 W / m 2

La pérdida total de calor a través de esta pared será: pérdida  = q. A = 108,62 [W / m 2 ] x 30 [m 2 ] = 3258,62 W

Punto de fusión de materiales

Tabla de materiales - Punto de fusión

Conductividad térmica de materiales

Tabla de materiales: conductividad térmica

Capacidad calorífica de materiales

Tabla de materiales - Capacidad calorífica