Facebook Instagram Youtube Twitter

Fer et Cobalt – Comparaison – Propriétés

Cet article contient une comparaison des principales propriétés thermiques et atomiques du fer et du cobalt, deux éléments chimiques comparables du tableau périodique. Il contient également des descriptions de base et des applications des deux éléments. Fer contre Cobalt.

fer et cobalt - comparaison

Comparer le fer avec un autre élément

Carbone - Propriétés - Prix - Applications - Production

Oxygène - Propriétés - Prix - Applications - Production

Fluor - Propriétés - Prix - Applications - Production

Magnésium - Propriétés - Prix - Applications - Production

Aluminium - Propriétés - Prix - Applications - Production

Chlore - Propriétés - Prix - Applications - Production

Potassium - Propriétés - Prix - Applications - Production

Calcium - Propriétés - Prix - Applications - Production

Chrome - Propriétés - Prix - Applications - Production

Manganèse - Propriétés - Prix - Applications - Production

Cobalt - Propriétés - Prix - Applications - Production

Nickel - Propriétés - Prix - Applications - Production

Cuivre - Propriétés - Prix - Applications - Production

Zinc - Propriétés - Prix - Applications - Production

Zirconium - Propriétés - Prix - Applications - Production

Prospect - Propriétés - Prix - Applications - Production

Comparer le cobalt avec un autre élément

Lithium - Propriétés - Prix - Applications - Production

Fer - Propriétés - Prix - Applications - Production

Cuivre - Propriétés - Prix - Applications - Production

Cobalt - Propriétés - Prix - Applications - Production

Cadmium - Propriétés - Prix - Applications - Production

Zinc - Propriétés - Prix - Applications - Production

Argent - Propriétés - Prix - Applications - Production

Or - Propriétés - Prix - Applications - Production

Tungstène - Propriétés - Prix - Applications - Production

Fer et Cobalt – À propos des éléments

Fer

Le fer est un métal de la première série de transition. C’est en masse l’élément le plus courant sur Terre, formant une grande partie du noyau externe et interne de la Terre. C’est le quatrième élément le plus commun de la croûte terrestre. Son abondance dans les planètes rocheuses comme la Terre est due à sa production abondante par fusion dans des étoiles de grande masse.

Cobalt

Le cobalt se trouve dans la croûte terrestre uniquement sous forme chimiquement combinée, à l’exception de petits gisements trouvés dans des alliages de fer météorique naturel. L’élément libre, produit par fusion réductrice, est un métal gris argenté dur et brillant.

Fer dans le tableau périodique

Cobalt dans le tableau périodique

Source : www.luciteria.com

Fer et Cobalt – Applications

Fer

Le fer est utilisé dans de nombreux secteurs tels que l’électronique, la fabrication, l’automobile, la construction et le bâtiment. Le fer est le plus largement utilisé de tous les métaux, représentant plus de 90 % de la production mondiale de métaux. Son faible coût et sa haute résistance en font souvent le matériau de choix pour résister aux contraintes ou transmettre des forces, telles que la construction de machines et de machines-outils, de rails, d’automobiles, de coques de navires, de barres d’armature en béton et de la charpente porteuse des bâtiments. . Étant donné que le fer pur est assez doux, il est le plus souvent combiné avec des éléments d’alliage pour fabriquer de l’acier. Les aciers sont des alliages fer-carbone qui peuvent contenir des concentrations appréciables d’autres éléments d’alliage. L’ajout d’une petite quantité de carbone non métallique au fer échange sa grande ductilité contre une plus grande résistance. En raison de sa très grande résistance, mais toujours d’une ténacité substantielle et de sa capacité à être fortement altérée par un traitement thermique, l’acier est l’un des alliages ferreux les plus utiles et les plus courants dans l’utilisation moderne. Il existe des milliers d’alliages qui ont des compositions et/ou des traitements thermiques différents. Les propriétés mécaniques sont sensibles à la teneur en carbone, qui est normalement inférieure à 1,0 % en poids.

Cobalt

Le cobalt a été utilisé dans de nombreuses applications industrielles, commerciales et militaires. Le cobalt est principalement utilisé dans les batteries lithium-ion et dans la fabrication d’alliages magnétiques, résistants à l’usure et à haute résistance. Superalliages à base de cobalt. Cette classe d’alliages est relativement nouvelle. En 2006, Sato et al. découvert une nouvelle phase dans le système Co–Al–W. Contrairement aux autres superalliages, les alliages à base de cobalt se caractérisent par une matrice austénitique renforcée en solution solide (fcc) dans laquelle une faible quantité de carbure est distribuée. Bien qu’ils ne soient pas utilisés commercialement dans la mesure des superalliages à base de Ni, les éléments d’alliage trouvés dans les alliages à base de Co de recherche sont C, Cr, W, Ni, Ti, Al, Ir et Ta. Ils possèdent une meilleure soudabilité et une meilleure résistance à la fatigue thermique par rapport à l’alliage à base de nickel. De plus, ils ont une excellente résistance à la corrosion à haute température (980-1100 °C) en raison de leur teneur en chrome plus élevée. Plusieurs composés du cobalt sont des catalyseurs d’oxydation. Les catalyseurs typiques sont les carboxylates de cobalt (appelés savons de cobalt). Ils sont également utilisés dans les peintures, les vernis et les encres en tant qu' »agents siccatifs » grâce à l’oxydation des huiles siccatives.

Fer et Cobalt – Comparaison dans le tableau

Élément Fer Cobalt
Densité 7,874 g/cm3 8,9 g/cm3
Résistance à la traction ultime 540 MPa 800 MPa
Limite d’élasticité 50 MPa 220 MPa
Module de Young 211 GPa 209 GPa
Échelle de Mohs 4.5 5
Dureté Brinell 490 MPa 800 MPa
Dureté Vickers 608 MPa 1040 MPa
Point de fusion 1538°C 1495°C
Point d’ébullition 2861°C 2927°C
Conductivité thermique 80,2 W/mK 100 W/mK
Coefficient de dilatation thermique 11,8 µm/mK 13 µm/mK
Chaleur spécifique 0,44 J/g·K 0,42 J/g·K
Température de fusion 13,8 kJ/mole 16,19 kJ/mole
Chaleur de vaporisation 349,6 kJ/mole 376,5 kJ/mol