Facebook Instagram Youtube Twitter

Iron and Zirconium – Comparison – Properties

This article contains comparison of key thermal and atomic properties of iron and zirconium, two comparable chemical elements from the periodic table. It also contains basic descriptions and applications of both elements. Iron vs Zirconium.

iron and zirconium - comparison

Compare iron with another element

Carbon - Properties - Price - Applications - Production

Oxygen - Properties - Price - Applications - Production

Fluorine - Properties - Price - Applications - Production

Magnesium - Properties - Price - Applications - Production

Aluminium - Properties - Price - Applications - Production

Chlorine - Properties - Price - Applications - Production

Potassium - Properties - Price - Applications - Production

Calcium - Properties - Price - Applications - Production

Chromium - Properties - Price - Applications - Production

Manganese - Properties - Price - Applications - Production

Cobalt - Properties - Price - Applications - Production

Nickel - Properties - Price - Applications - Production

Copper - Properties - Price - Applications - Production

Zinc - Properties - Price - Applications - Production

Zirconium - Properties - Price - Applications - Production

Lead - Properties - Price - Applications - Production

Compare zirconium with another element

Titanium - Properties - Price - Applications - Production

Iron - Properties - Price - Applications - Production

Hafnium - Properties - Price - Applications - Production

Niobium - Properties - Price - Applications - Production

Tungsten - Properties - Price - Applications - Production

Uranium - Properties - Price - Applications - Production

Iron and Zirconium – About Elements

Iron

Iron is a metal in the first transition series. It is by mass the most common element on Earth, forming much of Earth’s outer and inner core. It is the fourth most common element in the Earth’s crust. Its abundance in rocky planets like Earth is due to its abundant production by fusion in high-mass stars.

Zirconium

Zirconium is a lustrous, grey-white, strong transition metal that resembles hafnium and, to a lesser extent, titanium. Zirconium is mainly used as a refractory and opacifier, although small amounts are used as an alloying agent for its strong resistance to corrosion. Zirconium is widely used as a cladding for nuclear reactor fuels. The desired properties of these alloys are a low neutron-capture cross-section and resistance to corrosion under normal service conditions.

Iron in Periodic Table

Zirconium in Periodic Table

Source: www.luciteria.com

Iron and Zirconium – Applications

Iron

Iron is used in numerous sectors such as electronics, manufacturing, automotive, and construction and building. Iron is the most widely used of all the metals, accounting for over 90% of worldwide metal produc0tion. Its low cost and high strength often make it the material of choice material to withstand stress or transmit forces, such as the construction of machinery and machine tools, rails, automobiles, ship hulls, concrete reinforcing bars, and the load-carrying framework of buildings. Since pure iron is quite soft, it is most commonly combined with alloying elements to make steel. Steels are iron–carbon alloys that may contain appreciable concentrations of other alloying elements. Adding a small amount of non-metallic carbon to iron trades its great ductility for the greater strength. Due to its very-high strength, but still substantial toughness, and its ability to be greatly altered by heat treatment, steel is one of the most useful and common ferrous alloy in modern use. There are thousands of alloys that have different compositions and/or heat treatments. The mechanical properties are sensitive to the content of carbon, which is normally less than 1.0 wt%.

Zirconium

Most zircon is used directly in high-temperature applications. This material is refractory, hard, and resistant to chemical attack. Because of these properties, zircon finds many applications, few of which are highly publicized. Its main use is as an opacifier, conferring a white, opaque appearance to ceramic materials. Zirconium and its alloys are widely used as a cladding for nuclear reactor fuels. Zirconium alloyed with niobium or tin has excellent corrosion properties. The high corrosion resistance of zirconium alloys results from the natural formation of a dense stable oxide on the surface of the metal. This film is self healing, it continues to grow slowly at temperatures up to approximately 550 °C (1020 °F), and it remains tightly adherent. The desired property of these alloys is also a low neutron-capture cross-section. The disadvantages of zirconium are low strength properties and low heat resistance, which can be eliminated, for example, by alloying with niobium.

Iron and Zirconium – Comparison in Table

Element Iron Zirconium
Density 7.874 g/cm3 6.511 g/cm3
Ultimate Tensile Strength 540 MPa 330 MPa
Yield Strength 50 MPa 230 MPa
Young’s Modulus of Elasticity 211 GPa 88 GPa
Mohs Scale 4.5 5
Brinell Hardness 490 MPa 650 MPa
Vickers Hardness 608 MPa 900 MPa
Melting Point 1538 °C 1855 °C
Boiling Point 2861 °C 4377 °C
Thermal Conductivity 80.2 W/mK 22.7 W/mK
Thermal Expansion Coefficient 11.8 µm/mK 5.7 µm/mK
Specific Heat 0.44 J/g K 0.27 J/g K
Heat of Fusion 13.8 kJ/mol 16.9 kJ/mol
Heat of Vaporization 349.6 kJ/mol 591 kJ/mol