Facebook Instagram Youtube Twitter

Manganèse et Cuivre – Comparaison – Propriétés

Cet article contient une comparaison des principales propriétés thermiques et atomiques du manganèse et du cuivre, deux éléments chimiques comparables du tableau périodique. Il contient également des descriptions de base et des applications des deux éléments. Manganèse vs Cuivre.

manganèse et cuivre - comparaison

Comparer le manganèse avec un autre élément

Fer - Propriétés - Prix - Applications - Production

Cuivre - Propriétés - Prix - Applications - Production

Zinc - Propriétés - Prix - Applications - Production

Comparer le cuivre avec un autre élément

Béryllium - Propriétés - Prix - Applications - Production

Magnésium - Propriétés - Prix - Applications - Production

Aluminium - Propriétés - Prix - Applications - Production

Silicium - Propriétés - Prix - Applications - Production

Chlore - Propriétés - Prix - Applications - Production

Titane - Propriétés - Prix - Applications - Production

Chrome - Propriétés - Prix - Applications - Production

Manganèse - Propriétés - Prix - Applications - Production

Fer - Propriétés - Prix - Applications - Production

Cobalt - Propriétés - Prix - Applications - Production

Argent - Propriétés - Prix - Applications - Production

Or - Propriétés - Prix - Applications - Production

Etain - Propriétés - Prix - Applications - Production

Manganèse et Cuivre – À propos des éléments

Manganèse

Le manganèse est un métal avec d’importantes utilisations dans les alliages métalliques industriels, en particulier dans les aciers inoxydables.

Le Cuivre

Le cuivre est un métal doux, malléable et ductile avec une conductivité thermique et électrique très élevée. Une surface fraîchement exposée de cuivre pur a une couleur rouge-orange. Le cuivre est utilisé comme conducteur de chaleur et d’électricité, comme matériau de construction et comme constituant de divers alliages métalliques, tels que l’argent sterling utilisé dans les bijoux, le cupronickel utilisé pour fabriquer du matériel marin et des pièces de monnaie, et le constantan utilisé dans les jauges de contrainte et les thermocouples. pour la mesure de la température.

Manganèse dans le tableau périodique

Cuivre dans le tableau périodique

Source : www.luciteria.com

Manganèse et Cuivre – Applications

Manganèse

Le manganèse est un agent d’alliage important. Près de 90 % du manganèse produit annuellement est utilisé dans la production d’acier. Dans les aciers, le manganèse améliore les qualités de laminage et de forgeage, ainsi que la résistance, la ténacité, la rigidité, la résistance à l’usure, la dureté et la trempabilité. La deuxième plus grande application du manganèse concerne les alliages d’aluminium. L’aluminium avec environ 1,5% de manganèse a une résistance accrue à la corrosion grâce à des grains qui absorbent les impuretés qui conduiraient à la corrosion galvanique. Le manganèse peut être transformé en de nombreux composés utiles. Par exemple, l’oxyde de manganèse, qui peut être utilisé dans les engrais et la céramique.

Le Cuivre

Historiquement, l’alliage du cuivre avec un autre métal, par exemple l’étain pour fabriquer du bronze, a été pratiqué pour la première fois environ 4 000 ans après la découverte de la fusion du cuivre et environ 2 000 ans après la généralisation du «bronze naturel». Une civilisation ancienne est définie comme étant à l’âge du bronze soit en produisant du bronze en fondant son propre cuivre et en l’alliant avec de l’étain, de l’arsenic ou d’autres métaux. Les principales applications du cuivre sont les fils électriques (60 %), les toitures et la plomberie (20 %) et les machines industrielles (15 %). Le cuivre est principalement utilisé comme métal pur, mais lorsqu’une plus grande dureté est requise, il est utilisé dans des alliages tels que le laiton et le bronze (5 % de l’utilisation totale). Le cuivre et les alliages à base de cuivre dont les laitons (Cu-Zn) et les bronzes (Cu-Sn) sont largement utilisés dans différentes applications industrielles et sociétales. Certaines des utilisations courantes des alliages de laiton comprennent les bijoux de fantaisie, les serrures, les charnières, les engrenages, les roulements, les douilles de munitions, les radiateurs automobiles, les instruments de musique, les emballages électroniques et les pièces de monnaie. Le bronze, ou les alliages et mélanges de type bronze, ont été utilisés pour les pièces de monnaie sur une plus longue période. est encore largement utilisé aujourd’hui pour les ressorts, les roulements, les bagues, les roulements pilotes de transmission automobile et les raccords similaires, et est particulièrement courant dans les roulements des petits moteurs électriques. Le laiton et le bronze sont des matériaux d’ingénierie courants dans l’architecture moderne et principalement utilisés pour les toitures et les revêtements de façade en raison de leur aspect visuel. est encore largement utilisé aujourd’hui pour les ressorts, les roulements, les bagues, les roulements pilotes de transmission automobile et les raccords similaires, et est particulièrement courant dans les roulements des petits moteurs électriques. Le laiton et le bronze sont des matériaux d’ingénierie courants dans l’architecture moderne et principalement utilisés pour les toitures et les revêtements de façade en raison de leur aspect visuel. est encore largement utilisé aujourd’hui pour les ressorts, les roulements, les bagues, les roulements pilotes de transmission automobile et les raccords similaires, et est particulièrement courant dans les roulements des petits moteurs électriques. Le laiton et le bronze sont des matériaux d’ingénierie courants dans l’architecture moderne et principalement utilisés pour les toitures et les revêtements de façade en raison de leur aspect visuel.

Manganèse et Cuivre – Comparaison dans le tableau

Élément Manganèse Le cuivre
Densité 7,47 g/cm3 8,92 g/cm3
Résistance à la traction ultime 650 MPa 120 MPa
Limite d’élasticité 230 MPa 33 MPa
Module de Young 198 GPa 120 GPa
Échelle de Mohs 6 3
Dureté Brinell 200 MPa 250 MPa
Dureté Vickers N / A 350 MPa
Point de fusion 1246°C 1084,62°C
Point d’ébullition 2061°C 2562°C
Conductivité thermique 7,82 W/mK 401 W/mK
Coefficient de dilatation thermique 21,7 µm/mK 16,5 µm/mK
Chaleur spécifique 0,48 J/g·K 0,38 J/g·K
Température de fusion 12,05 kJ/mole 13,05 kJ/mole
Chaleur de vaporisation 266 kJ/mole 300,3 kJ/mole