Facebook Instagram Youtube Twitter

Alpaca – Densidade – Resistência – Dureza – Ponto de Fusão

Sobre Alpaca

A prata de níquel, também conhecida como prata alemã, latão de níquel ou alpaca, é uma liga de cobre com níquel e muitas vezes zinco. UNS C75700 níquel prata 65-12 liga de cobre tem boa resistência à corrosão e manchas e alta conformabilidade. A prata de níquel é nomeada devido à sua aparência prateada, mas não contém prata elementar, a menos que seja banhada. 

preço de força de densidade de propriedades de prata de níquel

Resumo

Nome Alpaca
Fase em STP sólido
Densidade 8690 kg/m3
Resistência à tração 400 MPa
Força de rendimento 170 MPa
Módulo de elasticidade de Young 117 GPa
Dureza Brinell 90 BHN
Ponto de fusão 1040 °C
Condutividade térmica 40 W/mK
Capacidade de calor 377 J/g K
Preço 35 $/kg

Densidade de Alpaca

As densidades típicas de várias substâncias estão à pressão atmosférica. A densidade é definida como a massa por unidade de volume. É uma propriedade intensiva, que é matematicamente definida como massa dividida pelo volume: ρ = m/V

Em palavras, a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância. A unidade padrão do SI é quilogramas por metro cúbico (kg/m3). A unidade padrão inglesa é libras de massa por pé cúbico (lbm/ft3).

A densidade do Alpaca é 8690 kg/m3.

Exemplo: Densidade

Calcule a altura de um cubo feito de Alpaca, que pesa uma tonelada métrica.

Solução:

A densidade é definida como a massa por unidade de volume. É matematicamente definido como massa dividida pelo volume: ρ = m/V.

Como o volume de um cubo é a terceira potência de seus lados (V = a3), a altura desse cubo pode ser calculada:

densidade do material - equação

A altura desse cubo é então a = 0,486 m.

Densidade de Materiais

Tabela de Materiais - Densidade de Materiais

Propriedades Mecânicas do Alpaca

Força de Alpaca

Na mecânica dos materiais, a resistência de um material é sua capacidade de suportar uma carga aplicada sem falha ou deformação plástica. A resistência dos materiais considera basicamente a relação entre as cargas externas aplicadas a um material e a deformação resultante ou alteração nas dimensões do material. Ao projetar estruturas e máquinas, é importante considerar esses fatores, a fim de que o material selecionado tenha resistência adequada para resistir às cargas ou forças aplicadas e manter sua forma original.

A resistência de um material é a sua capacidade de suportar esta carga aplicada sem falha ou deformação plástica. Para tensão de tração, a capacidade de um material ou estrutura de suportar cargas que tendem a se alongar é conhecida como resistência à tração final (UTS). O limite de escoamento ou tensão de escoamento é a propriedade do material definida como a tensão na qual um material começa a se deformar plasticamente, enquanto o ponto de escoamento é o ponto onde a deformação não linear (elástica + plástica) começa. No caso de tensão de tração de uma barra uniforme (curva tensão-deformação), a  lei de Hooke descreve o comportamento de uma barra na região elástica. O módulo de elasticidade de Young é o módulo de elasticidade para tensões de tração e compressão no regime de elasticidade linear de uma deformação uniaxial e geralmente é avaliado por ensaios de tração.

Veja também: Resistência dos Materiais

Resistência à tração final de Alpaca

A resistência à tração final do Alpaca é de 400 MPa.

Força de Cedência de Alpaca

O limite de escoamento do Alpaca é de 170 MPa.

Módulo de Elasticidade de Alpaca

O módulo de elasticidade de Young do Alpaca é 117 GPa.

Dureza da Alpaca

Na ciência dos materiais, a dureza é a capacidade de suportar o recuo da superfície (deformação plástica localizada) e arranhõesO teste de dureza Brinell é um dos testes de dureza de indentação, que foi desenvolvido para testes de dureza. Nos testes Brinell, um  penetrador esférico duro é forçado sob uma carga específica na superfície do metal a ser testado.

O número de dureza Brinell (HB) é a carga dividida pela área da superfície da indentação. O diâmetro da impressão é medido com um microscópio com uma escala sobreposta. O número de dureza Brinell é calculado a partir da equação:

número de dureza brinell - definição

A dureza Brinell do níquel prata é de aproximadamente 90 BHN (convertido).

Veja também: Dureza dos Materiais

Exemplo: Força

Suponha uma haste de plástico, que é feita de Alpaca. Esta haste de plástico tem uma área de seção transversal de 1 cm2. Calcule a força de tração necessária para atingir a resistência à tração final para este material, que é: UTS = 400 MPa.

Solução:

A tensão (σ) pode ser igualada à carga por unidade de área ou à força (F) aplicada por área de seção transversal (A) perpendicular à força como:

resistência do material - equação

portanto, a força de tração necessária para atingir a resistência à tração final é:

F = UTS x A = 400 x 106 x 0,0001 = 40000 N

Resistência dos Materiais

Tabela de Materiais - Resistência dos Materiais

Elasticidade dos Materiais

Tabela de Materiais - Elasticidade dos Materiais

Dureza dos Materiais

Tabela de Materiais - Dureza dos Materiais 

Propriedades Térmicas do Alpaca

Alpaca – Ponto de Fusão

O ponto de fusão do Alpaca é 1040 °C.

Observe que esses pontos estão associados à pressão atmosférica padrão. Em geral, a fusão é uma mudança de fase de uma substância da fase sólida para a líquida. O ponto de fusão de uma substância é a temperatura na qual essa mudança de fase ocorre. O ponto de fusão também define uma condição na qual o sólido e o líquido podem existir em equilíbrio. Para vários compostos químicos e ligas, é difícil definir o ponto de fusão, pois geralmente são uma mistura de vários elementos químicos.

Alpaca – Condutividade Térmica

A condutividade térmica do Alpaca é 40 W/(m·K).

As características de transferência de calor de um material sólido são medidas por uma propriedade chamada condutividade térmica, k (ou λ), medida em W/mK. É uma medida da capacidade de uma substância de transferir calor através de um material por condução. Observe que a lei de Fourier se aplica a toda matéria, independentemente de seu estado (sólido, líquido ou gasoso), portanto, também é definida para líquidos e gases.

A condutividade térmica da maioria dos líquidos e sólidos varia com a temperatura. Para vapores, também depende da pressão. No geral:

condutividade térmica - definição

A maioria dos materiais são quase homogêneos, portanto, geralmente podemos escrever k = k(T). Definições semelhantes estão associadas a condutividades térmicas nas direções y e z (ky, kz), mas para um material isotrópico a condutividade térmica é independente da direção de transferência, kx = ky = kz = k.

Alpaca – Calor Específico

O calor específico do Alpaca é 377 J/g K.

Calor específico, ou capacidade calorífica específica, é uma propriedade relacionada à energia interna que é muito importante na termodinâmica. As  propriedades intensivas cvcp são definidas para substâncias compressíveis puras simples como derivadas parciais da energia interna u(T, v) e entalpia h(T, p), respectivamente: 

onde os subscritos v e p denotam as variáveis ​​mantidas fixas durante a diferenciação. As propriedades cv e cp são chamadas de calores específicos (ou capacidades térmicas) porque, sob certas condições especiais, elas relacionam a mudança de temperatura de um sistema com a quantidade de energia adicionada pela transferência de calor. Suas unidades no SI são J/kg K ou J/mol K.

Exemplo: cálculo de transferência de calor

Níquel Prata - Condutividade TérmicaA condutividade térmica é definida como a quantidade de calor (em watts) transferida através de uma área quadrada de material de determinada espessura (em metros) devido a uma diferença de temperatura. Quanto menor a condutividade térmica do material, maior a capacidade do material de resistir à transferência de calor.

Calcule a taxa de fluxo de calor através de uma parede de 3 m x 10 m de área (A = 30 m2). A parede tem 15 cm de espessura (L1) e é feita de Alpaca com condutividade térmica de k1 = 40 W/mK (isolante térmico ruim). Suponha que as temperaturas interna e externa  sejam 22 °C e -8 °C, e os coeficientes de transferência de calor por convecção nos lados interno e externo sejam h1 = 10 W/m2K e h2 = 30 W/m2K, respectivamente. Note-se que estes coeficientes de convecção dependem especialmente das condições ambientais e interiores (vento, humidade, etc.).

Calcule o fluxo de calor (perda de calor) através desta parede.

Solução:

Como foi escrito, muitos dos processos de transferência de calor envolvem sistemas compostos e até envolvem uma combinação de condução e convecção. Com esses sistemas compostos, muitas vezes é conveniente trabalhar com um coeficiente global de transferência de calorconhecido como fator U. O fator U é definido por uma expressão análoga à lei de resfriamento de Newton:

Cálculo da transferência de calor - lei de resfriamento de Newton

O coeficiente global de transferência de calor está relacionado com a resistência térmica total e depende da geometria do problema.

Assumindo a transferência de calor unidimensional através da parede plana e desconsiderando a radiação, o coeficiente global de transferência de calor pode ser calculado como:

Cálculo de transferência de calor - fator U

coeficiente global de transferência de calor é então: U = 1 / (1/10 + 0,15/40 + 1/30) = 7,29 W/m2K

O fluxo de calor pode então ser calculado simplesmente como: q = 7,29 [W/m2K] x 30 [K] = 218,85 W/m2

A perda total de calor através desta parede será: qperda = q . A = 218,85 [L/m2] x 30 [m2] = 65065,35 W

Ponto de fusão dos Materiais

Tabela de Materiais - Ponto de Fusão

Condutividade Térmica dos Materiais

Tabela de Materiais - Condutividade Térmica

Capacidade de Calor dos Materiais

Tabela de Materiais - Capacidade de Calor

 

Galistan – Densidade – Ponto de Fusão – Condutividade Térmica

Sobre o Galistan

Galinstan é uma liga eutética composta de gálio, índio e estanho (daí seu nome, que é derivado do gálio, índio e estanho, o nome latino para estanho). Galistan derrete a -19 °C (-2 °F) e é, portanto, líquido à temperatura ambiente.

preço da força da densidade das propriedades do galistan

Resumo

Nome Galistan
Fase em STP líquido
Densidade 6440 kg/m3
Resistência à tração N/D
Força de rendimento N/D
Módulo de elasticidade de Young N/D
Dureza Brinell N/D
Ponto de fusão -19 °C
Condutividade térmica 16,5 W/mK
Capacidade de calor 296 J/gK
Preço 700 $/kg

Densidade do Galistão

As densidades típicas de várias substâncias estão à pressão atmosférica. A densidade é definida como a massa por unidade de volume. É uma propriedade intensiva, que é matematicamente definida como massa dividida pelo volume: ρ = m/V

Em palavras, a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância. A unidade padrão do SI é quilogramas por metro cúbico (kg/m3). A unidade padrão inglesa é libras de massa por pé cúbico (lbm/ft3).

A densidade do Galistan é 6440 kg/m3.

Exemplo: Densidade

Calcule a altura de um cubo feito de Galistan, que pesa uma tonelada métrica.

Solução:

A densidade é definida como a massa por unidade de volume. É matematicamente definido como massa dividida pelo volume: ρ = m/V.

Como o volume de um cubo é a terceira potência de seus lados (V = a3), a altura desse cubo pode ser calculada:

densidade do material - equação

A altura deste cubo é então a = 0,537 m.

Densidade de Materiais

Tabela de Materiais - Densidade de Materiais

Propriedades Térmicas do Galistan

Galistan – Ponto de Fusão

O ponto de fusão do Galistan é -19 °C.

Observe que esses pontos estão associados à pressão atmosférica padrão. Em geral, a fusão é uma mudança de fase de uma substância da fase sólida para a líquida. O ponto de fusão de uma substância é a temperatura na qual essa mudança de fase ocorre. O ponto de fusão também define uma condição na qual o sólido e o líquido podem existir em equilíbrio. Para vários compostos químicos e ligas, é difícil definir o ponto de fusão, pois geralmente são uma mistura de vários elementos químicos.

Galistan – Condutividade Térmica

A condutividade térmica do Galistan é 16,5 W/(m·K).

As características de transferência de calor de um material sólido são medidas por uma propriedade chamada condutividade térmica, k (ou λ), medida em W/mK. É uma medida da capacidade de uma substância de transferir calor através de um material por condução. Observe que a lei de Fourier se aplica a toda matéria, independentemente de seu estado (sólido, líquido ou gasoso), portanto, também é definida para líquidos e gases.

A condutividade térmica da maioria dos líquidos e sólidos varia com a temperatura. Para vapores, também depende da pressão. No geral:

condutividade térmica - definição

A maioria dos materiais são quase homogêneos, portanto, geralmente podemos escrever k = k(T). Definições semelhantes estão associadas a condutividades térmicas nas direções y e z (ky, kz), mas para um material isotrópico a condutividade térmica é independente da direção de transferência, kx = ky = kz = k.

Galistan – Calor Específico

O calor específico do Galistan é 296  J/g K.

Calor específico, ou capacidade calorífica específica, é uma propriedade relacionada à energia interna que é muito importante na termodinâmica. As propriedades intensivas cv e cp são definidas para substâncias compressíveis puras simples como derivadas parciais da energia interna u(T, v) e entalpia h(T, p), respectivamente: 

onde os subscritos vp denotam as variáveis ​​mantidas fixas durante a diferenciação. As propriedades cvcp são chamadas de calores específicos (ou capacidades térmicas) porque, sob certas condições especiais, elas relacionam a mudança de temperatura de um sistema com a quantidade de energia adicionada pela transferência de calor. Suas unidades no SI são J/kg K ou J/mol K.

Exemplo: cálculo de transferência de calor

Galistan - Condutividade TérmicaA condutividade térmica é definida como a quantidade de calor (em watts) transferida através de uma área quadrada de material de determinada espessura (em metros) devido a uma diferença de temperatura. Quanto menor a condutividade térmica do material, maior a capacidade do material de resistir à transferência de calor.

Calcule a taxa de fluxo de calor através de uma parede de 3 m x 10 m de área (A = 30 m2). A parede tem 15 cm de espessura (L1) e é feita de Galistan com condutividade térmica de k1 = 16,5 W/mK (isolante térmico ruim). Suponha que as temperaturas interna e externa  sejam 22 °C e -8 °C, e os coeficientes de transferência de calor por convecção nos lados interno e externo sejam h1 = 10 W/m2K e h2 = 30 W/m2K, respectivamente. Note-se que estes coeficientes de convecção dependem especialmente das condições ambientais e interiores (vento, humidade, etc.).

Calcule o fluxo de calor (perda de calor) através desta parede.

Solução:

Como foi escrito, muitos dos processos de transferência de calor envolvem sistemas compostos e até envolvem uma combinação de conduçãoconvecção. Com esses sistemas compostos, muitas vezes é conveniente trabalhar com um coeficiente global de transferência de calorconhecido como fator U. O fator U é definido por uma expressão análoga à lei de resfriamento de Newton:

Cálculo da transferência de calor - lei de resfriamento de Newton

O  coeficiente global de transferência de calor está relacionado com a resistência térmica total e depende da geometria do problema.

Assumindo a transferência de calor unidimensional através da parede plana e desconsiderando a radiação, o coeficiente global de transferência de calor pode ser calculado como:

Cálculo de transferência de calor - fator U

coeficiente global de transferência de calor é então: U = 1 / (1/10 + 0,15/16,5 + 1/30) = 7,02 W/m 2 K

O fluxo de calor pode então ser calculado simplesmente como: q = 7,02 [W/m2K] x 30 [K] = 210,64 W/m 2

A perda total de calor através desta parede será: qperda = q . A = 210,64 [W/m2] x 30 [m2] = 6319,15 W

Ponto de fusão dos Materiais

Tabela de Materiais - Ponto de Fusão

Condutividade Térmica dos Materiais

Tabela de Materiais - Condutividade Térmica

Capacidade de Calor dos Materiais

Tabela de Materiais - Capacidade de Calor

Resistência dos Materiais

Tabela de Materiais - Resistência dos Materiais

Elasticidade dos Materiais

Tabela de Materiais - Elasticidade dos Materiais

Dureza dos Materiais

Tabela de Materiais - Dureza dos Materiais 

 

Vidro – Densidade – Capacidade de Calor – Condutividade Térmica

Sobre o Vidro

O vidro é um sólido amorfo não cristalino, muitas vezes transparente. Os vidros têm amplo uso prático, tecnológico e decorativo em, por exemplo, vidraças, utensílios de mesa e ótica. Como o vidro é um sólido amorfo (não cristalino), geralmente é formado pela solidificação de um fundido sem cristalização. O vidro é feito resfriando ingredientes fundidos, como areia de sílica, com rapidez suficiente para evitar a formação de cristais visíveis. Em alguns livros mais antigos, o termo tem sido usado como sinônimo de vidro. Hoje em dia, “sólido vítreo” ou “sólido amorfo” é considerado o conceito abrangente, e o vidro o caso mais especial: o vidro é um sólido amorfo que exibe uma transição vítrea. O vidro que você encontra com mais frequência é o vidro de silicato, que consiste principalmente em sílica ou dióxido de silício, SiO2.preço de força de densidade de propriedades de vidro

Resumo

Nome Vidro
Fase em STP sólido
Densidade 2500 kg/m3
Resistência à tração 7 MPa
Força de rendimento N/D
Módulo de elasticidade de Young 80 GPa
Dureza Brinell 1550 BHN
Ponto de fusão 1700 °C
Condutividade térmica 1,05 W/mK
Capacidade de calor 840 J/gK
Preço 5 $/kg

Densidade do Vidro

As densidades típicas de várias substâncias estão à pressão atmosférica. A densidade é definida como a massa por unidade de volume. É uma propriedade intensiva, que é matematicamente definida como massa dividida pelo volume: ρ = m/V

Em palavras, a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância. A unidade padrão do SI é quilogramas por metro cúbico (kg/m3). A unidade padrão inglesa é libras de massa por pé cúbico (lbm/ft3).

A densidade do Vidro é 2500 kg/m3.

Exemplo: Densidade

Calcule a altura de um cubo feito de vidro, que pesa uma tonelada métrica.

Solução:

A densidade é definida como a massa por unidade de volume. É matematicamente definido como massa dividida pelo volume: ρ = m/V.

Como o volume de um cubo é a terceira potência de seus lados (V = a3), a altura desse cubo pode ser calculada:

densidade do material - equação

A altura desse cubo é então a = 0,737 m.

Densidade de Materiais

Tabela de Materiais - Densidade de Materiais

Propriedades Mecânicas do Vidro

Força do Vidro

Na mecânica dos materiais, a resistência de um material é sua capacidade de suportar uma carga aplicada sem falha ou deformação plástica. A resistência dos materiais considera basicamente a relação entre as cargas externas aplicadas a um material e a deformação resultante ou alteração nas dimensões do material. Ao projetar estruturas e máquinas, é importante considerar esses fatores, para que o material selecionado tenha resistência adequada para resistir às cargas ou forças aplicadas e manter sua forma original.

A resistência de um material é sua capacidade de suportar esta carga aplicada sem falha ou deformação plástica. Para tensão de tração, a capacidade de um material ou estrutura de suportar cargas que tendem a se alongar é conhecida como resistência à tração final (UTS). O limite de escoamento ou tensão de escoamento é a propriedade do material definida como a tensão na qual um material começa a se deformar plasticamente, enquanto o ponto de escoamento é o ponto onde a deformação não linear (elástica + plástica) começa. No caso de tensão tracional de uma barra uniforme (curva tensão-deformação), a  lei de Hooke descreve o comportamento de uma barra na região elástica. O módulo de elasticidade de Young é o módulo de elasticidade para tensões de tração e compressão no regime de elasticidade linear de uma deformação uniaxial e geralmente é avaliado por ensaios de tração.

Veja também: Resistência dos Materiais

Resistência à tração final do Vidro

A resistência à tração final do Vidro é de 7 MPa.

Força de rendimento do Vidro

O limite de escoamento do Vidro é N/A.

Módulo de Elasticidade do Vidro

O módulo de elasticidade de Young do Vidro é de 80 MPa.

Dureza do Vidro

Na ciência dos materiais, a dureza é a capacidade de suportar o recuo da superfície (deformação plástica localizada) e arranhõesO teste de dureza Brinell  é um dos testes de dureza de indentação, que foi desenvolvido para testes de dureza. Nos testes Brinell, um penetrador esférico duro é forçado sob uma carga específica na superfície do metal a ser testado.

O número de dureza Brinell (HB) é a carga dividida pela área da superfície da indentação. O diâmetro da impressão é medido com um microscópio com uma escala sobreposta. O número de dureza Brinell é calculado a partir da equação:

número de dureza brinell - definição

A dureza Brinell do Vidro é de aproximadamente 1550 BHN (convertido).

Veja também: Dureza dos Materiais

Exemplo: Força

Suponha uma haste de plástico, que é feita de vidro. Esta haste de plástico tem uma área de seção transversal de 1 cm2. Calcule a força de tração necessária para atingir a resistência à tração final para este material, que é: UTS = 7 MPa.

Solução:

A tensão (σ) pode ser igualada à carga por unidade de área ou à força (F) aplicada por área de seção transversal (A) perpendicular à força como:

resistência do material - equação

portanto, a força de tração necessária para atingir a resistência à tração final é:

F = UTS x A = 7 x 106 x 0,0001 = 700 N

Resistência dos Materiais

Tabela de Materiais - Resistência dos Materiais

Elasticidade dos Materiais

Tabela de Materiais - Elasticidade dos Materiais

Dureza dos Materiais

Tabela de Materiais - Dureza dos Materiais 

Propriedades Térmicas do Vidro

Vidro – Ponto de Fusão

O ponto de fusão do Vidro é 1700 °C.

Observe que esses pontos estão associados à pressão atmosférica padrão. Em geral, a fusão é uma mudança de fase de uma substância da fase sólida para a líquida. O ponto de fusão de uma substância é a temperatura na qual essa mudança de fase ocorre. O ponto de fusão também define uma condição na qual o sólido e o líquido podem existir em equilíbrio. Para vários compostos químicos e ligas, é difícil definir o ponto de fusão, pois geralmente são uma mistura de vários elementos químicos.

Vidro – Condutividade Térmica

A condutividade térmica do Vidro é 1,05 W/(m·K).

As características de transferência de calor de um material sólido são medidas por uma propriedade chamada condutividade térmica, k (ou λ), medida em W/mK. É uma medida da capacidade de uma substância de transferir calor através de um material por condução. Observe que a lei de Fourier se aplica a toda matéria, independentemente de seu estado (sólido, líquido ou gasoso), portanto, também é definida para líquidos e gases.

A condutividade térmica da maioria dos líquidos e sólidos varia com a temperatura. Para vapores, também depende da pressão. No geral:

condutividade térmica - definição

A maioria dos materiais são quase homogêneos, portanto, geralmente podemos escrever k = k (T). Definições semelhantes estão associadas a condutividades térmicas nas direções y e z (ky, kz), mas para um material isotrópico a condutividade térmica é independente da direção de transferência, kx = ky = kz = k.

Vidro – Calor Específico

O calor específico do Vidro é 840 J/g K.

Calor específico, ou capacidade calorífica específica, é uma propriedade relacionada à energia interna que é muito importante na termodinâmica. As propriedades intensivas cv e cp são definidas para substâncias compressíveis puras simples como derivadas parciais da energia interna u(T, v) e entalpia h(T, p), respectivamente: 

onde os subscritos vp denotam as variáveis ​​mantidas fixas durante a diferenciação. As propriedades cv cp são chamadas de calores específicos (ou capacidades térmicas) porque, sob certas condições especiais, elas relacionam a mudança de temperatura de um sistema com a quantidade de energia adicionada pela transferência de calor. Suas unidades no SI são J/kg K ou J/mol K.

Exemplo: cálculo de transferência de calor

Vidro - Condutividade TérmicaA condutividade térmica é definida como a quantidade de calor (em watts) transferida através de uma área quadrada de material de determinada espessura (em metros) devido a uma diferença de temperatura. Quanto menor a condutividade térmica do material, maior a capacidade do material de resistir à transferência de calor.

Calcule a taxa de fluxo de calor através de uma parede de 3 m x 10 m de área (A = 30 m2). A parede tem 15 cm de espessura (L1) e é feita de vidro com condutividade térmica de k1 = 1,05 W/mK (isolante térmico ruim). Suponha que as temperaturas interna e externa  sejam 22 °C e -8 °C, e os coeficientes de transferência de calor por convecção nos lados interno e externo sejam h1 = 10 W/m2K e h2 = 30 W/m2K, respectivamente. Note-se que estes coeficientes de convecção dependem muito especialmente das condições ambientais e interiores (vento, humidade, etc.).

Calcule o fluxo de calor (perda de calor) através desta parede.

Solução:

Como foi escrito, muitos dos processos de transferência de calor envolvem sistemas compostos e até envolvem uma combinação de conduçãoconvecção. Com esses sistemas compostos, muitas vezes é conveniente trabalhar com um coeficiente global de transferência de calorconhecido como fator U. O fator U é definido por uma expressão análoga à lei de resfriamento de Newton:

Cálculo da transferência de calor - lei de resfriamento de Newton

O coeficiente global de transferência de calor está relacionado com a resistência térmica total e depende da geometria do problema.

Assumindo a transferência de calor unidimensional através da parede plana e desconsiderando a radiação, o coeficiente global de transferência de calor pode ser calculado como:

Cálculo de transferência de calor - fator U

coeficiente global de transferência de calor é então: U = 1 / (1/10 + 0,15/1,05 + 1/30) = 3,62 W/m2K

O fluxo de calor pode então ser calculado simplesmente como: q = 3,62 [W/m2K] x 30 [K] = 108,62 W/m2

A perda total de calor através desta parede será: qperda = q . A = 108,62 [W/m2] x 30 [m2] = 3258,62 W

Ponto de fusão dos Materiais

Tabela de Materiais - Ponto de Fusão

Condutividade Térmica dos Materiais

Tabela de Materiais - Condutividade Térmica

Capacidade de Calor dos Materiais

Tabela de Materiais - Capacidade de Calor

 

Tijolo – Densidade – Capacidade de Calor – Condutividade Térmica

Sobre o Tijolo

Tijolos são produtos estruturais de argila, fabricados como unidades padrão, utilizados na construção civil. Três tipos básicos de tijolos são tijolos não queimados, queimados e quimicamente definidos. Cada tipo é fabricado de forma diferente. Tijolos queimados são queimados em um forno que os torna duráveis. Tijolos de barro modernos, queimados, são formados em um dos três processos – lama macia, prensagem a seco ou extrusão. Dependendo do país, o método extrudado ou de lama mole é o mais comum, pois são os mais econômicos. 

preço da força da densidade das propriedades do tijolo

Resumo

Nome Tijolo
Fase em STP sólido
Densidade 1700 kg/m3
Resistência à tração 2,8 MPa
Força de rendimento N/D
Módulo de elasticidade de Young N/D
Dureza Brinell N/D
Ponto de fusão 1727 °C
Condutividade térmica 1,31 W/mK
Capacidade de calor 800 J/gK
Preço 0,2 $/kg

Densidade do Tijolo

As densidades típicas de várias substâncias estão à pressão atmosférica. A densidade é definida como a massa por unidade de volume. É uma propriedade intensiva, que é matematicamente definida como massa dividida pelo volume: ρ = m/V

Em palavras, a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância. A unidade padrão do SI é quilogramas por metro cúbico (kg/m3). A unidade padrão inglesa é libras de massa por pé cúbico (lbm/ft3).

A densidade do Tijolo é 1700 kg/m3.

Exemplo: Densidade

Calcule a altura de um cubo feito de tijolo, que pesa uma tonelada métrica.

Solução:

A densidade é definida como a massa por unidade de volume. É matematicamente definido como massa dividida pelo volume: ρ = m/V

Como o volume de um cubo é a terceira potência de seus lados (V = a3), a altura desse cubo pode ser calculada:

densidade do material - equação

A altura desse cubo é então a = 0,838 m.

Densidade de Materiais

Tabela de Materiais - Densidade de Materiais

Propriedades Mecânicas do Tijolo

Força do Tijolo

Na mecânica dos materiais, a resistência de um material é sua capacidade de suportar uma carga aplicada sem falha ou deformação plástica. A resistência dos materiais considera basicamente a relação entre as cargas externas aplicadas a um material e a deformação resultante ou alteração nas dimensões do material. Ao projetar estruturas e máquinas, é importante considerar esses fatores, para que o material selecionado tenha resistência adequada para resistir às cargas ou forças aplicadas e manter sua forma original.

A resistência de um material é sua capacidade de suportar esta carga aplicada sem falha ou deformação plástica. Para tensão de tração, a capacidade de um material ou estrutura de suportar cargas que tendem a se alongar é conhecida como resistência à tração final (UTS). O limite de escoamento ou tensão de escoamento é a propriedade do material definida como a tensão na qual um material começa a se deformar plasticamente, enquanto o ponto de escoamento é o ponto onde a deformação não linear (elástica + plástica) começa. No caso de tensão tracional de uma barra uniforme (curva tensão-deformação), a lei de Hooke descreve o comportamento de uma barra na região elástica. O módulo de elasticidade de Young é o módulo de elasticidade para tensões de tração e compressão no regime de elasticidade linear de uma deformação uniaxial e geralmente é avaliado por ensaios de tração.

Veja também: Resistência dos Materiais

Resistência à tração final do Tijolo

A resistência à tração final do Tijolo é de 2,8 MPa.

Força de Cedência do Tijolo

O limite de escoamento do Tijolo é N/A.

Módulo de Elasticidade do Tijolo

O módulo de elasticidade de Young de Tijolo é N/A.

Dureza do Tijolo

Na ciência dos materiais, a dureza é a capacidade de suportar o recuo da superfície (deformação plástica localizada) e arranhõesO teste de dureza Brinell é um dos testes de dureza de indentação, que foi desenvolvido para testes de dureza. Nos testes Brinell, um penetrador esférico duro é forçado sob uma carga específica na superfície do metal a ser testado.

O número de dureza Brinell (HB) é a carga dividida pela área da superfície da indentação. O diâmetro da impressão é medido com um microscópio com uma escala sobreposta. O número de dureza Brinell é calculado a partir da equação:

número de dureza brinell - definição

A dureza Brinell do Tijolo é aproximadamente N/A.

Veja também: Dureza dos Materiais

Exemplo: Força

Suponha uma haste de plástico, que é feita de tijolo. Esta haste de plástico tem uma área de seção transversal de 1 cm2. Calcule a força de tração necessária para atingir a resistência à tração final para este material, que é: UTS = 2,8 MPa.

Solução:

A tensão (σ) pode ser igualada à carga por unidade de área ou à força (F) aplicada por área de seção transversal (A) perpendicular à força como:

resistência do material - equação

portanto, a força de tração necessária para atingir a resistência à tração final é:

F = UTS x A = 2,8 x 106 x 0,0001 = 280 N

Resistência dos Materiais

Tabela de Materiais - Resistência dos Materiais

Elasticidade dos Materiais

Tabela de Materiais - Elasticidade dos Materiais

Dureza dos Materiais

Tabela de Materiais - Dureza dos Materiais 

Propriedades Térmicas do Tijolo

Tijolo – Ponto de Fusão

O ponto de fusão do Tijolo é 1727 °C.

Observe que esses pontos estão associados à pressão atmosférica padrão. Em geral, a fusão é uma mudança de fase de uma substância da fase sólida para a líquida. O ponto de fusão de uma substância é a temperatura na qual essa mudança de fase ocorre. O ponto de fusão também define uma condição na qual o sólido e o líquido podem existir em equilíbrio. Para vários compostos químicos e ligas, é difícil definir o ponto de fusão, pois geralmente são uma mistura de vários elementos químicos.

Tijolo – Condutividade Térmica

A condutividade térmica do Tijolo é 1,31 W/(m·K).

As características de transferência de calor de um material sólido são medidas por uma propriedade chamada condutividade térmica, k (ou λ), medida em W/mK. É uma medida da capacidade de uma substância de transferir calor através de um material por condução. Observe que a lei de Fourier se aplica a toda matéria, independentemente de seu estado (sólido, líquido ou gasoso), portanto, também é definida para líquidos e gases.

A condutividade térmica da maioria dos líquidos e sólidos varia com a temperatura. Para vapores, também depende da pressão. No geral:

condutividade térmica - definição

A maioria dos materiais são quase homogêneos, portanto, geralmente podemos escrever k = k (T). Definições semelhantes estão associadas a condutividades térmicas nas direções y e z (ky, kz), mas para um material isotrópico a condutividade térmica é independente da direção de transferência, kx = ky = kz = k.

Tijolo – Calor Específico

O calor específico do Tijolo é 800 J/g K.

Calor específico, ou capacidade calorífica específica, é uma propriedade relacionada à energia interna  que é muito importante na termodinâmica. As propriedades intensivas cvcp são definidas para substâncias compressíveis puras simples como derivadas parciais da energia interna u(T, v) e entalpia h(T, p), respectivamente: 

onde os subscritos vp denotam as variáveis ​​mantidas fixas durante a diferenciação. As propriedades cv e cp são chamadas de calores específicos (ou capacidades térmicas) porque, sob certas condições especiais, elas relacionam a mudança de temperatura de um sistema com a quantidade de energia adicionada pela transferência de calor. Suas unidades no SI são J/kg K ou J/mol K.

Exemplo: cálculo de transferência de calor

Tijolo - Condutividade TérmicaA condutividade térmica é definida como a quantidade de calor (em watts) transferida através de uma área quadrada de material de determinada espessura (em metros) devido a uma diferença de temperatura. Quanto menor a condutividade térmica do material, maior a capacidade do material de resistir à transferência de calor.

Calcule a taxa de fluxo de calor através de uma parede de 3 m x 10 m de área (A = 30 m2). A parede tem 15 cm de espessura (L1) e é feita de Tijolo com condutividade térmica de k1 = 1,31 W/mK (isolante térmico ruim). Suponha que as temperaturas interna e externa  sejam 22 °C e -8 °C, e os coeficientes de transferência de calor por convecção nos lados interno e externo sejam h1 = 10 W/m2K e h2 = 30 W/m2K, respectivamente. Note-se que estes coeficientes de convecção dependem muito especialmente das condições ambientais e interiores (vento, humidade, etc.).

Calcule o fluxo de calor (perda de calor) através desta parede.

Solução:

Como foi escrito, muitos dos processos de transferência de calor envolvem sistemas compostos e até envolvem uma combinação de conduçãoconvecção. Com esses sistemas compostos, muitas vezes é conveniente trabalhar com um coeficiente global de transferência de calorconhecido como fator U. O fator U é definido por uma expressão análoga à lei de resfriamento de Newton:

Cálculo da transferência de calor - lei de resfriamento de Newton

O  coeficiente global de transferência de calor  está relacionado com a  resistência térmica total  e depende da geometria do problema.

Assumindo a transferência de calor unidimensional através da parede plana e desconsiderando a radiação, o coeficiente global de transferência de calor pode ser calculado como:

Cálculo de transferência de calor - fator U

coeficiente global de transferência de calor é então: U = 1 / (1/10 + 0,15/1,31 + 1/30) = 4,03 W/m2K

O fluxo de calor pode então ser calculado simplesmente como: q = 4,03 [W/m2K] x 30 [K] = 121,05 W/m2

A perda total de calor através desta parede será: qperda = q . A = 121,05 [W/m2] x 30 [m2] = 3631,42 W

Ponto de fusão dos Materiais

Tabela de Materiais - Ponto de Fusão

Condutividade Térmica dos Materiais

Tabela de Materiais - Condutividade Térmica

Capacidade de Calor dos Materiais

Tabela de Materiais - Capacidade de Calor

Propriedades e preços de outros materiais

tabela de materiais em resolução de 8k

 

Porcelanato – Densidade – Capacidade Calorífica – Condutividade Térmica

Sobre Porcelanato

A porcelana é um material cerâmico feito por materiais de aquecimento, geralmente incluindo um material como o caulim, em um forno a temperaturas entre 1200 e 1400 °C. Os materiais de porcelana e grés são tão resistentes a ácidos e produtos químicos quanto o vidro, mas com maior resistência. Isso é compensado por um maior potencial de choque térmico.

preço de força de densidade de propriedades de porcelana

Resumo

Nome Porcelanato
Fase em STP sólido
Densidade 2400 kg/m3
Resistência à tração 29 MPa
Força de rendimento N/D
Módulo de elasticidade de Young N/D
Dureza Brinell 7 Mohs
Ponto de fusão 1927 °C
Condutividade térmica 1,5 W/mK
Capacidade de calor 1050 J/gK
Preço 20 $/kg

Densidade da Porcelana

As densidades típicas de várias substâncias estão à pressão atmosférica. A densidade é definida como a massa por unidade de volume. É uma propriedade intensiva, que é matematicamente definida como massa dividida pelo volume: ρ = m/V

Em palavras, a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância. A unidade padrão do SI é quilogramas por metro cúbico (kg/m3). A unidade padrão inglesa é libras de massa por pé cúbico (lbm/ft3).

A densidade da Porcelana é 2400 kg/m3.

Exemplo: Densidade

Calcule a altura de um cubo feito de porcelana, que pesa uma tonelada métrica.

Solução:

A densidade é definida como a massa por unidade de volume. É matematicamente definido como massa dividida pelo volume: ρ = m/V.

Como o volume de um cubo é a terceira potência de seus lados (V = a3), a altura desse cubo pode ser calculada:

densidade do material - equação

A altura desse cubo é então a = 0,747 m.

Densidade de Materiais

Tabela de Materiais - Densidade de Materiais

Propriedades Mecânicas da Porcelana

Força da Porcelana

Na mecânica dos materiais, a resistência de um material é sua capacidade de suportar uma carga aplicada sem falha ou deformação plástica. A resistência dos materiais considera basicamente a relação entre as cargas externas aplicadas a um material e a deformação resultante ou alteração nas dimensões do material. Ao projetar estruturas e máquinas, é importante considerar esses fatores, para que o material selecionado tenha resistência adequada para resistir às cargas ou forças aplicadas e manter sua forma original.

A resistência de um material é sua capacidade de suportar esta carga aplicada sem falha ou deformação plástica. Para tensão de tração, a capacidade de um material ou estrutura de suportar cargas que tendem a se alongar é conhecida como resistência à tração final (UTS). O limite de escoamento ou tensão de escoamento é a propriedade do material definida como a tensão na qual um material começa a se deformar plasticamente, enquanto o ponto de escoamento é o ponto onde a deformação não linear (elástica + plástica) começa. No caso de tensão tracional de uma barra uniforme (curva tensão-deformação), a lei de Hooke descreve o comportamento de uma barra na região elástica. O módulo de elasticidade de Young é o módulo de elasticidade para tensões de tração e compressão no regime de elasticidade linear de uma deformação uniaxial e geralmente é avaliado por ensaios de tração.

Veja também: Resistência dos Materiais

Resistência à tração final da Porcelana

A resistência à tração final da Porcelana é de 29 MPa.

Força de rendimento da Porcelana

O limite de escoamento da Porcelana é N/A.

Módulo de Elasticidade da Porcelana

O módulo de elasticidade de Young da Porcelana é N/A.

Dureza da Porcelana

Na ciência dos materiais, a dureza é a capacidade de suportar o recuo da superfície (deformação plástica localizada) e arranhõesO teste de dureza Brinell é um dos testes de dureza de indentação, que foi desenvolvido para testes de dureza. Nos testes Brinell, um penetrador esférico duro é forçado sob uma carga específica na superfície do metal a ser testado.

O número de dureza Brinell (HB) é a carga dividida pela área da superfície da indentação. O diâmetro da impressão é medido com um microscópio com uma escala sobreposta. O número de dureza Brinell é calculado a partir da equação:

número de dureza brinell - definição

A dureza da Porcelana é de aproximadamente 7 Mohs.

Veja também: Dureza dos Materiais

Exemplo: Força

Suponha uma haste de plástico, que é feita de porcelana. Esta haste de plástico tem uma área de seção transversal de 1 cm 2 . Calcule a força de tração necessária para atingir a resistência à tração final para este material, que é: UTS = 29 MPa.

Solução:

A tensão (σ) pode ser igualada à carga por unidade de área ou à força (F) aplicada por área de seção transversal (A) perpendicular à força como:

resistência do material - equação

portanto, a força de tração necessária para atingir a resistência à tração final é:

F = UTS x A = 29 x 106 x 0,0001 = 2900 N

Resistência dos Materiais

Tabela de Materiais - Resistência dos Materiais

Elasticidade dos Materiais

Tabela de Materiais - Elasticidade dos Materiais

Dureza dos Materiais

Tabela de Materiais - Dureza dos Materiais 

Propriedades Térmicas da Porcelana

Porcelanato – Ponto de Fusão

O ponto de fusão da Porcelana é 1927 °C.

Observe que esses pontos estão associados à pressão atmosférica padrão. Em geral, a fusão é uma mudança de fase de uma substância da fase sólida para a líquida. O ponto de fusão de uma substância é a temperatura na qual essa mudança de fase ocorre. O ponto de fusão também define uma condição na qual o sólido e o líquido podem existir em equilíbrio. Para vários compostos químicos e ligas, é difícil definir o ponto de fusão, pois geralmente são uma mistura de vários elementos químicos.

Porcelanato – Condutividade Térmica

A condutividade térmica da Porcelana é 1,5 W/(m·K).

As características de transferência de calor de um material sólido são medidas por uma propriedade chamada condutividade térmica, k (ou λ), medida em W/mK. É uma medida da capacidade de uma substância de transferir calor através de um material por condução. Observe que a lei de Fourier se aplica a toda matéria, independentemente de seu estado (sólido, líquido ou gasoso), portanto, também é definida para líquidos e gases.

A condutividade térmica da maioria dos líquidos e sólidos varia com a temperatura. Para vapores, também depende da pressão. No geral:

condutividade térmica - definição

A maioria dos materiais são quase homogêneos, portanto, geralmente podemos escrever k = k (T). Definições semelhantes estão associadas a condutividades térmicas nas direções y e z (ky, kz), mas para um material isotrópico a condutividade térmica é independente da direção de transferência, kx = ky = kz = k.

Porcelanato – Calor Específico

O calor específico da Porcelana é 1050 J/g K.

Calor específico, ou capacidade calorífica específica, é uma propriedade relacionada à energia interna que é muito importante na termodinâmica. As propriedades intensivas cv e cp são definidas para substâncias compressíveis puras simples como derivadas parciais da energia interna u(T, v) e entalpia h(T, p), respectivamente: 

onde os subscritos vp denotam as variáveis ​​mantidas fixas durante a diferenciação. As propriedades cvcp são chamadas de calores específicos (ou capacidades térmicas) porque, sob certas condições especiais, elas relacionam a mudança de temperatura de um sistema com a quantidade de energia adicionada pela transferência de calor. Suas unidades no SI são J/kg K ou J/mol K.

Exemplo: cálculo de transferência de calor

Porcelanato - Condutividade TérmicaA condutividade térmica é definida como a quantidade de calor (em watts) transferida através de uma área quadrada de material de determinada espessura (em metros) devido a uma diferença de temperatura. Quanto menor a condutividade térmica do material, maior a capacidade do material de resistir à transferência de calor.

Calcule a taxa de fluxo de calor através de uma parede de 3 m x 10 m de área (A = 30 m2). A parede tem 15 cm de espessura (L1) e é feita de Porcelana com condutividade térmica de k1 = 1,5 W/mK (isolante térmico ruim). Suponha que as temperaturas interna e externa sejam 22° C e -8 °C, e os coeficientes de transferência de calor por convecção  nos lados interno e externo sejam h1 = 10 W/m2K e h2 = 30 W/m2K, respectivamente. Note-se que estes coeficientes de convecção dependem muito especialmente das condições ambientais e interiores (vento, humidade, etc.).

Calcule o fluxo de calor (perda de calor) através desta parede.

Solução:

Como foi escrito, muitos dos processos de transferência de calor envolvem sistemas compostos e até envolvem uma combinação de conduçãoconvecção. Com esses sistemas compostos, muitas vezes é conveniente trabalhar com um coeficiente global de transferência de calorconhecido como fator U. O fator U é definido por uma expressão análoga à lei de resfriamento de Newton:

Cálculo da transferência de calor - lei de resfriamento de Newton

O coeficiente global de transferência de calor está relacionado com a resistência térmica total e depende da geometria do problema.

Assumindo a transferência de calor unidimensional através da parede plana e desconsiderando a radiação, o coeficiente global de transferência de calor pode ser calculado como:

Cálculo de transferência de calor - fator U

coeficiente global de transferência de calor é então: U = 1 / (1/10 + 0,15/1,5 + 1/30) = 4,29 W/m2K

O fluxo de calor pode então ser calculado simplesmente como: q = 4,29 [W/m2K] x 30 [K] = 128,57 W/m2

A perda total de calor através desta parede será: qperda = q . A = 128,57 [W/m2] x 30 [m2] = 3857,14 W

Ponto de fusão dos Materiais

Tabela de Materiais - Ponto de Fusão

Condutividade Térmica dos Materiais

Tabela de Materiais - Condutividade Térmica

Capacidade de Calor dos Materiais

Tabela de Materiais - Capacidade de Calor

 

Areia – Densidade – Capacidade de Calor – Condutividade Térmica

Sobre a Areia

A areia é um material granular composto de rochas finamente divididas e partículas minerais. A composição da areia varia, dependendo das fontes e condições da rocha local, mas o constituinte mais comum da areia em ambientes continentais e ambientes costeiros não tropicais é a sílica (dióxido de silício, ou SiO2), geralmente na forma de quartzo. A sílica é uma das famílias de materiais mais complexas e abundantes, existindo como composto de vários minerais e como produto sintético. 

preço da força da densidade das propriedades da areia

Resumo

Nome Areia
Fase em STP sólido
Densidade 1500 kg/m3
Resistência à tração N/D
Força de rendimento N/D
Módulo de elasticidade de Young N/D
Dureza Brinell N/D
Ponto de fusão 1577 °C
Condutividade térmica 0,25 W/mK
Capacidade de calor 830 J/gK
Preço 0,03 $/kg

Densidade da Areia

As densidades típicas de várias substâncias estão à pressão atmosférica. A densidade é definida como a massa por unidade de volume. É uma propriedade intensiva, que é matematicamente definida como massa dividida pelo volume: ρ = m/V

Em palavras, a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância. A unidade padrão do SI é quilogramas por metro cúbico (kg/m3). A unidade padrão inglesa é libras de massa por pé cúbico (lbm/ft3).

A densidade da areia é de 1500 kg/m3.

Exemplo: Densidade

Calcule a altura de um cubo feito de areia, que pesa uma tonelada métrica.

Solução:

A densidade é definida como a massa por unidade de volume. É matematicamente definido como massa dividida pelo volume: ρ = m/V.

Como o volume de um cubo é a terceira potência de seus lados (V = a3), a altura desse cubo pode ser calculada:

densidade do material - equação

A altura desse cubo é então a = 0,874 m.

Densidade de Materiais

Tabela de Materiais - Densidade de Materiais

Propriedades Térmicas da Areia

Areia – Ponto de Fusão

O ponto de fusão da Areia é 1577 °C.

Observe que esses pontos estão associados à pressão atmosférica padrão. Em geral, a fusão é uma mudança de fase de uma substância da fase sólida para a líquida. O ponto de fusão de uma substância é a temperatura na qual essa mudança de fase ocorre. O ponto de fusão também define uma condição na qual o sólido e o líquido podem existir em equilíbrio. Para vários compostos químicos e ligas, é difícil definir o ponto de fusão, pois geralmente são uma mistura de vários elementos químicos.

Areia – Condutividade Térmica

A condutividade térmica da Areia é de 0,25 W/(m·K).

As características de transferência de calor de um material sólido são medidas por uma propriedade chamada condutividade térmica, k (ou λ), medida em W/mK. É uma medida da capacidade de uma substância de transferir calor através de um material por condução. Observe que a lei de Fourier se aplica a toda matéria, independentemente de seu estado (sólido, líquido ou gasoso), portanto, também é definida para líquidos e gases.

A condutividade térmica da maioria dos líquidos e sólidos varia com a temperatura. Para vapores, também depende da pressão. No geral:

condutividade térmica - definição

A maioria dos materiais são quase homogêneos, portanto, geralmente podemos escrever k = k (T). Definições semelhantes estão associadas a condutividades térmicas nas direções y e z (ky, kz), mas para um material isotrópico a condutividade térmica é independente da direção de transferência, kx = ky = kz = k.

Areia – Calor Específico

O calor específico da Areia é 830 J/g K.

Calor específico, ou capacidade calorífica específica, é uma propriedade relacionada à energia interna que é muito importante na termodinâmica. As propriedades intensivas cv e cp são definidas para substâncias compressíveis puras simples como derivadas parciais da energia interna u(T, v) e entalpia h(T, p), respectivamente: 

onde os subscritos vp denotam as variáveis ​​mantidas fixas durante a diferenciação. As propriedades cv e cp são chamadas de calores específicos (ou capacidades térmicas) porque, sob certas condições especiais, elas relacionam a mudança de temperatura de um sistema com a quantidade de energia adicionada pela transferência de calor. Suas unidades no SI são J/kg K ou J/mol K.

Exemplo: cálculo de transferência de calor

Areia - Condutividade TérmicaA condutividade térmica é definida como a quantidade de calor (em watts) transferida através de uma área quadrada de material de determinada espessura (em metros) devido a uma diferença de temperatura. Quanto menor a condutividade térmica do material, maior a capacidade do material de resistir à transferência de calor.

Calcule a taxa de fluxo de calor através de uma parede de 3 m x 10 m de área (A = 30 m2). A parede tem 15 cm de espessura (L1) e é feita de Areia com condutividade térmica de k1 = 0,25 W/mK (isolante térmico ruim). Suponha que as temperaturas interna e externa  sejam 22 °C e -8 °C, e os coeficientes de transferência de calor por convecção nos lados interno e externo sejam h1 = 10 W/m2K e h2 = 30 W/m2K, respectivamente. Note-se que estes coeficientes de convecção dependem muito especialmente das condições ambientais e interiores (vento, humidade, etc.).

Calcule o fluxo de calor (perda de calor) através desta parede.

Solução:

Como foi escrito, muitos dos processos de transferência de calor envolvem sistemas compostos e até envolvem uma combinação de condução e convecção. Com esses sistemas compostos, muitas vezes é conveniente trabalhar com um coeficiente global de transferência de calorconhecido como fator U. O fator U é definido por uma expressão análoga à lei de resfriamento de Newton:

Cálculo da transferência de calor - lei de resfriamento de Newton

O coeficiente global de transferência de calor está relacionado com a resistência térmica total e depende da geometria do problema.

Assumindo a transferência de calor unidimensional através da parede plana e desconsiderando a radiação, o coeficiente global de transferência de calor pode ser calculado como:

Cálculo de transferência de calor - fator U

coeficiente global de transferência de calor é então: U = 1 / (1/10 + 0,15/0,25 + 1/30) = 1,36 W/m2K

O fluxo de calor pode então ser calculado simplesmente como: q = 1,36 [W/m2K] x 30 [K] = 40,91 W/m2

A perda total de calor através desta parede será: qperda  = q . A = 40,91 [W/m2] x 30 [m2] = 1227,27 W

Ponto de fusão dos Materiais

Tabela de Materiais - Ponto de Fusão

Condutividade Térmica dos Materiais

Tabela de Materiais - Condutividade Térmica

Capacidade de Calor dos Materiais

Tabela de Materiais - Capacidade de Calor

Resistência dos Materiais

Tabela de Materiais - Resistência dos Materiais

Elasticidade dos Materiais

Tabela de Materiais - Elasticidade dos Materiais

Dureza dos Materiais

Tabela de Materiais - Dureza dos Materiais 

 

Calcário – Densidade – Capacidade de Calor – Condutividade Térmica

Sobre o Calcário

O calcário é muito comum na arquitetura, especialmente na Europa e na América do Norte. O calcário é extraído de pedreiras ou minas. Parte da pedra extraída, selecionada de acordo com sua composição química e granulometria óptica, é calcinada a cerca de 1000 °C (1830 °F) em diferentes tipos de fornos de cal para produzir cal viva. Os principais usuários de cal são a indústria siderúrgica (redução da temperatura de fusão da escória) ~ 35%, usos ambientais (dessulfurização, limpeza com água) ~ 20%, engenharia civil ~ 20% e química ~ 8%.

preço de força de densidade de propriedades de calcário

Resumo

Nome Calcário
Fase em STP sólido
Densidade 2750 kg/m3
Resistência à tração 2,5 MPa
Força de rendimento N/D
Módulo de elasticidade de Young 34 GPa
Dureza Brinell 4 Mohs
Ponto de fusão 1337 °C
Condutividade térmica 1,3 W/mK
Capacidade de calor 840 J/gK
Preço 3 $/kg

Densidade do calcário

As densidades típicas de várias substâncias estão à pressão atmosférica. A densidade é definida como a massa por unidade de volume. É uma propriedade intensiva, que é matematicamente definida como massa dividida pelo volume: ρ = m/V

Em palavras, a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância. A unidade padrão do SI é quilogramas por metro cúbico (kg/m3). A unidade padrão inglesa é libras de massa por pé cúbico (lbm/ft3).

A densidade do calcário é de 2750 kg/m3.

Exemplo: Densidade

Calcule a altura de um cubo feito de calcário, que pesa uma tonelada métrica.

Solução:

A densidade é definida como a massa por unidade de volume. É matematicamente definido como massa dividida pelo volume: ρ = m/V.

Como o volume de um cubo é a terceira potência de seus lados (V = a3), a altura desse cubo pode ser calculada:

densidade do material - equação

A altura desse cubo é então a = 0,714 m.

Densidade de Materiais

Tabela de Materiais - Densidade de Materiais

Propriedades Mecânicas do Calcário

Força do Calcário

Na mecânica dos materiais, a resistência de um material é sua capacidade de suportar uma carga aplicada sem falha ou deformação plástica. A resistência dos materiais considera basicamente a relação entre as cargas externas aplicadas a um material e a deformação resultante ou alteração nas dimensões do material. Ao projetar estruturas e máquinas, é importante considerar esses fatores, para que o material selecionado tenha resistência adequada para resistir às cargas ou forças aplicadas e manter sua forma original.

A resistência de um material é sua capacidade de suportar esta carga aplicada sem falha ou deformação plástica. Para tensão de tração, a capacidade de um material ou estrutura de suportar cargas que tendem a se alongar é conhecida como resistência à tração final (UTS). O limite de escoamento ou tensão de escoamento é a propriedade do material definida como a tensão na qual um material começa a se deformar plasticamente, enquanto o ponto de escoamento é o ponto onde a deformação não linear (elástica + plástica) começa. No caso de tensão tracional de uma barra uniforme (curva tensão-deformação), a lei de Hooke descreve o comportamento de uma barra na região elástica. O módulo de elasticidade de Young é o módulo de elasticidade para tensões de tração e compressão no regime de elasticidade linear de uma deformação uniaxial e geralmente é avaliado por ensaios de tração.

Veja também: Resistência dos Materiais

Resistência à tração final do Calcário

A resistência à tração final do Calcário é de 2,5 MPa.

Força de rendimento do Calcário

A força de rendimento do Calcário é N/A.

Módulo de elasticidade do Calcário

O módulo de elasticidade de Young do Calcário é de 34 GPa.

Dureza do Calcário

Na ciência dos materiais, a dureza é a capacidade de suportar o recuo da superfície (deformação plástica localizada) e arranhõesO teste de dureza Brinell é um dos testes de dureza de indentação, que foi desenvolvido para testes de dureza. Nos testes Brinell, um penetrador esférico duro é forçado sob uma carga específica na superfície do metal a ser testado.

O número de dureza Brinell (HB) é a carga dividida pela área da superfície da indentação. O diâmetro da impressão é medido com um microscópio com uma escala sobreposta. O número de dureza Brinell é calculado a partir da equação:

número de dureza brinell - definição

A dureza do Calcário é de aproximadamente 4 Mohs.

Veja também: Dureza dos Materiais

Exemplo: Força

Suponha uma haste de plástico, que é feita de calcário. Esta haste de plástico tem uma área de seção transversal de 1 cm2. Calcule a força de tração necessária para atingir a resistência à tração final para este material, que é: UTS = 2,5 MPa.

Solução:

A tensão (σ) pode ser igualada à carga por unidade de área ou à força (F) aplicada por área de seção transversal (A) perpendicular à força como:

resistência do material - equação

portanto, a força de tração necessária para atingir a resistência à tração final é:

F = UTS x A = 2,5 x 106 x 0,0001 = 250 N

Resistência dos Materiais

Tabela de Materiais - Resistência dos Materiais

Elasticidade dos Materiais

Tabela de Materiais - Elasticidade dos Materiais

Dureza dos Materiais

Tabela de Materiais - Dureza dos Materiais 

Propriedades Térmicas do Calcário

Calcário – Ponto de Fusão

O ponto de fusão do Calcário é 1337 °C.

Observe que esses pontos estão associados à pressão atmosférica padrão. Em geral, a fusão é uma mudança de fase de uma substância da fase sólida para a líquida. O ponto de fusão de uma substância é a temperatura na qual essa mudança de fase ocorre. O ponto de fusão também define uma condição na qual o sólido e o líquido podem existir em equilíbrio. Para vários compostos químicos e ligas, é difícil definir o ponto de fusão, pois geralmente são uma mistura de vários elementos químicos.

Calcário – Condutividade Térmica

A condutividade térmica do Calcário é de 1,3 W/(m·K).

As características de transferência de calor de um material sólido são medidas por uma propriedade chamada condutividade térmica, k (ou λ), medida em W/mK. É uma medida da capacidade de uma substância de transferir calor através de um material por condução. Observe que a lei de Fourier se aplica a toda matéria, independentemente de seu estado (sólido, líquido ou gasoso), portanto, também é definida para líquidos e gases.

A condutividade térmica da maioria dos líquidos e sólidos varia com a temperatura. Para vapores, também depende da pressão. No geral:

condutividade térmica - definição

A maioria dos materiais são quase homogêneos, portanto, geralmente podemos escrever k = k (T). Definições semelhantes estão associadas a condutividades térmicas nas direções y e z (ky, kz), mas para um material isotrópico a condutividade térmica é independente da direção de transferência, kx = ky = kz = k.

Calcário – Calor Específico

O calor específico do Calcário é 840 J/g K.

Calor específico, ou capacidade calorífica específica, é uma propriedade relacionada à energia interna que é muito importante na termodinâmica. As propriedades intensivas cv e cp são definidas para substâncias compressíveis puras simples como derivadas parciais da energia interna u(T, v)entalpia h(T, p), respectivamente: 

onde os subscritos vp denotam as variáveis ​​mantidas fixas durante a diferenciação. As propriedades cv e cp são chamadas de calores específicos (ou capacidades térmicas) porque, sob certas condições especiais, elas relacionam a mudança de temperatura de um sistema com a quantidade de energia adicionada pela transferência de calor. Suas unidades no SI são J/kg K ou J/mol K.

Exemplo: cálculo de transferência de calor

Calcário - Condutividade TérmicaA condutividade térmica é definida como a quantidade de calor (em watts) transferida através de uma área quadrada de material de determinada espessura (em metros) devido a uma diferença de temperatura. Quanto menor a condutividade térmica do material, maior a capacidade do material de resistir à transferência de calor.

Calcule a taxa de fluxo de calor através de uma parede de 3 m x 10 m de área (A = 30 m2). A parede tem 15 cm de espessura (L1) e é feita de calcário com condutividade térmica de k1 = 1,3 W/mK (isolante térmico ruim). Suponha que as temperaturas interna e externa  sejam 22 °C e -8 °C, e os coeficientes de transferência de calor por convecção  nos lados interno e externo sejam h1 = 10 W/m2K e h2 = 30 W/m2K, respectivamente. Note-se que estes coeficientes de convecção dependem muito especialmente das condições ambientais e interiores (vento, humidade, etc.).

Calcule o fluxo de calor (perda de calor) através desta parede.

Solução:

Como foi escrito, muitos dos processos de transferência de calor envolvem sistemas compostos e até envolvem uma combinação de condução e convecção. Com esses sistemas compostos, muitas vezes é conveniente trabalhar com um coeficiente global de transferência de calorconhecido como fator U. O fator U é definido por uma expressão análoga à lei de resfriamento de Newton:

Cálculo da transferência de calor - lei de resfriamento de Newton

O  coeficiente global de transferência de calor está relacionado com a resistência térmica total e depende da geometria do problema.

Assumindo a transferência de calor unidimensional através da parede plana e desconsiderando a radiação, o coeficiente global de transferência de calor pode ser calculado como:

Cálculo de transferência de calor - fator U

coeficiente global de transferência de calor é então: U = 1 / (1/10 + 0,15/1,3 + 1/30) = 4,02 W/m2K

O fluxo de calor pode então ser calculado simplesmente como: q = 4,02 [W/m2K] x 30 [K] = 120,62 W/m2

A perda total de calor através desta parede será: qperda = q . A = 120,62 [W/m2] x 30 [m2] = 3618,56 W

Ponto de fusão dos Materiais

Tabela de Materiais - Ponto de Fusão

Condutividade Térmica dos Materiais

Tabela de Materiais - Condutividade Térmica

Capacidade de Calor dos Materiais

Tabela de Materiais - Capacidade de Calor

 

Concreto – Densidade – Capacidade Calorífica – Condutividade Térmica

Sobre Concreto

O concreto é um material compósito feito de areia, cascalho e cimento. O cimento é um aglutinante, uma substância usada para construção que define, endurece e adere a outros materiais para ligá-los. O cimento Portland é o tipo de cimento mais comum em uso geral em todo o mundo. A maioria do concreto é derramado com materiais de reforço (como vergalhões) embutidos para fornecer resistência à tração, produzindo concreto armado. 

propriedades do concreto densidade força preço

Resumo

Nome Concreto
Fase em STP sólido
Densidade 2400 kg/m3
Resistência à tração 2 MPa
Força de rendimento N/D
Módulo de elasticidade de Young 60 GPa
Dureza Brinell 6 Mohs
Ponto de fusão 1527 °C
Condutividade térmica 0,5 W/mK
Capacidade de calor 1050 J/gK
Preço 0,07 $/kg

Densidade do Concreto

As densidades típicas de várias substâncias estão à pressão atmosférica. A densidade  é definida como a massa por unidade de volume. É uma propriedade intensiva, que é matematicamente definida como massa dividida pelo volume: ρ = m/V

Em palavras, a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância. A unidade padrão do SI é quilogramas por metro cúbico (kg/m 3). A unidade padrão inglesa é libras de massa por pé cúbico (lbm/ft3).

A densidade do concreto é 2400 kg/m3.

Exemplo: Densidade

Calcule a altura de um cubo feito de concreto, que pesa uma tonelada métrica.

Solução:

A densidade é definida como a massa por unidade de volume. É matematicamente definido como massa dividida pelo volume: ρ = m/V.

Como o volume de um cubo é a terceira potência de seus lados (V = a3), a altura desse cubo pode ser calculada:

densidade do material - equação

A altura desse cubo é então a = 0,747 m.

Densidade de Materiais

Tabela de Materiais - Densidade de Materiais

Propriedades Mecânicas do Concreto

Resistência do Concreto

Na mecânica dos materiais, a resistência de um material é sua capacidade de suportar uma carga aplicada sem falha ou deformação plástica. A resistência dos materiais considera basicamente a relação entre as cargas externas aplicadas a um material e a deformação resultante ou alteração nas dimensões do material. Ao projetar estruturas e máquinas, é importante considerar esses fatores, para que o material selecionado tenha resistência adequada para resistir às cargas ou forças aplicadas e manter sua forma original.

A resistência de um material é sua capacidade de suportar esta carga aplicada sem falha ou deformação plástica. Para tensão de tração, a capacidade de um material ou estrutura de suportar cargas que tendem a se alongar é conhecida como resistência à tração final (UTS). O limite de escoamento ou tensão de escoamento é a propriedade do material definida como a tensão na qual um material começa a se deformar plasticamente, enquanto o ponto de escoamento é o ponto onde a deformação não linear (elástica + plástica) começa. No caso de tensão tracional de uma barra uniforme (curva tensão-deformação), a lei de Hooke descreve o comportamento de uma barra na região elástica. O módulo de elasticidade de Young é o módulo de elasticidade para tensões de tração e compressão no regime de elasticidade linear de uma deformação uniaxial e geralmente é avaliado por ensaios de tração.

Veja também: Resistência dos Materiais

Resistência à tração final do Concreto

A resistência à tração final do Concreto é de 2 MPa.

Força de Cedência do Concreto

A resistência ao escoamento do Concreto é N/A.

Módulo de Elasticidade do Concreto

O módulo de elasticidade de Young do Concreto é de 60 GPa.

Dureza do Concreto

Na ciência dos materiais, a dureza é a capacidade de suportar o recuo da superfície (deformação plástica localizada) e arranhõesO teste de dureza Brinell é um dos testes de dureza de indentação, que foi desenvolvido para testes de dureza. Nos testes Brinell, um  penetrador esférico duro é forçado sob uma carga específica na superfície do metal a ser testado.

O número de dureza Brinell (HB) é a carga dividida pela área da superfície da indentação. O diâmetro da impressão é medido com um microscópio com uma escala sobreposta. O número de dureza Brinell é calculado a partir da equação:

número de dureza brinell - definição

A dureza do Concreto é de aproximadamente 6 Mohs.

Veja também: Dureza dos Materiais

Exemplo: Força

Suponha uma haste de plástico, que é feita de concreto. Esta haste de plástico tem uma área de seção transversal de 1 cm2. Calcule a força de tração necessária para atingir a resistência à tração final para este material, que é: UTS = 2 MPa.

Solução:

A tensão (σ)  pode ser igualada à carga por unidade de área ou à força (F) aplicada por área de seção transversal (A) perpendicular à força como:

resistência do material - equação

portanto, a força de tração necessária para atingir a resistência à tração final é:

F = UTS x A = 2 x 106 x 0,0001 = 200 N

Resistência dos Materiais

Tabela de Materiais - Resistência dos Materiais

Elasticidade dos Materiais

Tabela de Materiais - Elasticidade dos Materiais

Dureza dos Materiais

Tabela de Materiais - Dureza dos Materiais 

Propriedades Térmicas do Concreto

Concreto – Ponto de Fusão

O ponto de fusão do Concreto é 1527 °C.

Observe que esses pontos estão associados à pressão atmosférica padrão. Em geral, a fusão é uma mudança de fase de uma substância da fase sólida para a líquida. O ponto de fusão de uma substância é a temperatura na qual essa mudança de fase ocorre. O ponto de fusão também define uma condição na qual o sólido e o líquido podem existir em equilíbrio. Para vários compostos químicos e ligas, é difícil definir o ponto de fusão, pois geralmente são uma mistura de vários elementos químicos.

Concreto – Condutividade Térmica

A condutividade térmica do Concreto é de 0,5 W/(m·K).

As características de transferência de calor de um material sólido são medidas por uma propriedade chamada condutividade térmica, k (ou λ), medida em W/mK. É uma medida da capacidade de uma substância de transferir calor através de um material por condução. Observe que a lei de Fourier se aplica a toda matéria, independentemente de seu estado (sólido, líquido ou gasoso), portanto, também é definida para líquidos e gases.

A condutividade térmica da maioria dos líquidos e sólidos varia com a temperatura. Para vapores, também depende da pressão. No geral:

condutividade térmica - definição

A maioria dos materiais são quase homogêneos, portanto, geralmente podemos escrever k = k (T). Definições semelhantes estão associadas a condutividades térmicas nas direções y e z (ky, kz), mas para um material isotrópico a condutividade térmica é independente da direção de transferência, kx = ky = kz = k.

Concreto – Calor Específico

O calor específico do Concreto é 1050 J/g K.

Calor específico, ou capacidade calorífica específica, é uma propriedade relacionada à energia interna que é muito importante na termodinâmica. As propriedades intensivas cvcp são definidas para substâncias compressíveis puras simples como derivadas parciais da energia interna u(T, v) e entalpia h(T, p), respectivamente: 

onde os subscritos v e p denotam as variáveis ​​mantidas fixas durante a diferenciação. As propriedades cv e cp são chamadas de calores específicos (ou capacidades térmicas) porque, sob certas condições especiais, elas relacionam a mudança de temperatura de um sistema com a quantidade de energia adicionada pela transferência de calor. Suas unidades no SI são J/kg K ou J/mol K.

Exemplo: cálculo de transferência de calor

Concreto - Condutividade TérmicaA condutividade térmica é definida como a quantidade de calor (em watts) transferida através de uma área quadrada de material de determinada espessura (em metros) devido a uma diferença de temperatura. Quanto menor a condutividade térmica do material, maior a capacidade do material de resistir à transferência de calor.

Calcule a taxa de fluxo de calor através de uma parede de 3 m x 10 m de área (A = 30 m2). A parede tem 15 cm de espessura (L1) e é feita de Concreto com condutividade térmica de k1 = 0,5 W/mK (isolante térmico ruim). Suponha que as temperaturas interna e externa  sejam 22 °C e -8 °C, e os coeficientes de transferência de calor por convecção nos lados interno e externo sejam h1 = 10 W/m2K e h2 = 30 W/m2K, respectivamente. Note-se que estes coeficientes de convecção dependem muito especialmente das condições ambientais e interiores (vento, humidade, etc.).

Calcule o fluxo de calor (perda de calor) através desta parede.

Solução:

Como foi escrito, muitos dos processos de transferência de calor envolvem sistemas compostos e até envolvem uma combinação de conduçãoconvecção. Com esses sistemas compostos, muitas vezes é conveniente trabalhar com um coeficiente global de transferência de calorconhecido como fator U. O fator U é definido por uma expressão análoga à lei de resfriamento de Newton:

Cálculo da transferência de calor - lei de resfriamento de Newton

O coeficiente global de transferência de calor está relacionado com a resistência térmica total e depende da geometria do problema.

Assumindo a transferência de calor unidimensional através da parede plana e desconsiderando a radiação, o coeficiente global de transferência de calor pode ser calculado como:

Cálculo de transferência de calor - fator U

coeficiente global de transferência de calor é então: U = 1 / (1/10 + 0,15/0,5 + 1/30) = 2,31 W/m2K

O fluxo de calor pode então ser calculado simplesmente como: q = 2,31 [W/m2K] x 30 [K] = 69,23 W/m2

A perda total de calor através desta parede será: qperda = q . A = 69,23 [L/m2] x 30 [m2] = 2.076,92 W

Ponto de fusão dos Materiais

Tabela de Materiais - Ponto de Fusão

Condutividade Térmica dos Materiais

Tabela de Materiais - Condutividade Térmica

Capacidade de Calor dos Materiais

Tabela de Materiais - Capacidade de Calor

 

Granito – Densidade – Capacidade Calorífica – Condutividade Térmica

Sobre Granito

O granito é uma rocha ígnea de granulação grossa composta principalmente de quartzo, feldspato alcalino e plagioclásio. 

preço de força de densidade de propriedades de granito

Resumo

Nome Granito
Fase em STP sólido
Densidade 2750 kg/m3
Resistência à tração 4,8 MPa
Força de rendimento N/D
Módulo de elasticidade de Young N/D
Dureza Brinell 6 Mohs
Ponto de fusão 1260 °C
Condutividade térmica 3,2 W/mK
Capacidade de calor 790 J/gK
Preço 0,04 $/kg

Densidade do Granito

As densidades típicas de várias substâncias estão à pressão atmosférica. A densidade  é definida como a massa por unidade de volume. É uma propriedade intensiva, que é matematicamente definida como massa dividida pelo volume: ρ = m/V

Em palavras, a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância. A unidade padrão do SI é quilogramas por metro cúbico (kg/m3). A unidade padrão inglesa é libras de massa por pé cúbico (lbm/ft3).

A densidade do Granito é 2750 kg/m3.

Exemplo: Densidade

Calcule a altura de um cubo feito de granito, que pesa uma tonelada métrica.

Solução:

A densidade é definida como a massa por unidade de volume. É matematicamente definido como massa dividida pelo volume: ρ = m/V

Como o volume de um cubo é a terceira potência de seus lados (V = a3), a altura desse cubo pode ser calculada:

densidade do material - equação

A altura desse cubo é então a = 0,714 m.

Densidade de Materiais

Tabela de Materiais - Densidade de Materiais

Propriedades Mecânicas do Granito

Força do Granito

Na mecânica dos materiais, a resistência de um material é sua capacidade de suportar uma carga aplicada sem falha ou deformação plástica. A resistência dos materiais considera basicamente a relação entre as cargas externas aplicadas a um material e a deformação resultante ou alteração nas dimensões do material. Ao projetar estruturas e máquinas, é importante considerar esses fatores, para que o material selecionado tenha resistência adequada para resistir às cargas ou forças aplicadas e manter sua forma original.

A resistência de um material é sua capacidade de suportar esta carga aplicada sem falha ou deformação plástica. Para tensão de tração, a capacidade de um material ou estrutura de suportar cargas que tendem a se alongar é conhecida como resistência à tração final (UTS). O limite de escoamento ou tensão de escoamento é a propriedade do material definida como a tensão na qual um material começa a se deformar plasticamente, enquanto o ponto de escoamento é o ponto onde a deformação não linear (elástica + plástica) começa. No caso de tensão tracional de uma barra uniforme (curva tensão-deformação), a lei de Hooke descreve o comportamento de uma barra na região elástica. O módulo de elasticidade de Young é o módulo de elasticidade para tensões de tração e compressão no regime de elasticidade linear de uma deformação uniaxial e geralmente é avaliado por ensaios de tração.

Veja também: Resistência dos Materiais

Resistência à tração final do Granito

A resistência à tração final do Granito é de 4,8 MPa.

Força de Cedência do Granito

O limite de escoamento do Granito é N/A.

Módulo de Elasticidade do Granito

O módulo de elasticidade de Young do Granito é N/A.

Dureza do Granito

Na ciência dos materiais, a dureza é a capacidade de suportar o recuo da superfície (deformação plástica localizada) e arranhõesO teste de dureza Brinell é um dos testes de dureza de indentação, que foi desenvolvido para testes de dureza. Nos testes Brinell, um penetrador esférico duro é forçado sob uma carga específica na superfície do metal a ser testado.

O número de dureza Brinell (HB) é a carga dividida pela área da superfície da indentação. O diâmetro da impressão é medido com um microscópio com uma escala sobreposta. O número de dureza Brinell é calculado a partir da equação:

número de dureza brinell - definição

A dureza do Granito é de aproximadamente 6 Mohs.

Veja também: Dureza dos Materiais

Exemplo: Força

Suponha uma haste de plástico, que é feita de granito. Esta haste de plástico tem uma área de seção transversal de 1 cm2. Calcule a força de tração necessária para atingir a resistência à tração final para este material, que é: UTS = 4,8 MPa.

Solução:

A tensão (σ) pode ser igualada à carga por unidade de área ou à força (F) aplicada por área de seção transversal (A) perpendicular à força como:

resistência do material - equação

portanto, a força de tração necessária para atingir a resistência à tração final é:

F = UTS x A = 4,8 x 106 x 0,0001 = 480 N

Resistência dos Materiais

Tabela de Materiais - Resistência dos Materiais

Elasticidade dos Materiais

Tabela de Materiais - Elasticidade dos Materiais

Dureza dos Materiais

Tabela de Materiais - Dureza dos Materiais 

Propriedades Térmicas do Granito

Granito – Ponto de Fusão

O ponto de fusão do Granito é 1260 °C.

Observe que esses pontos estão associados à pressão atmosférica padrão. Em geral, a fusão é uma mudança de fase de uma substância da fase sólida para a líquida. O ponto de fusão de uma substância é a temperatura na qual essa mudança de fase ocorre. O ponto de fusão também define uma condição na qual o sólido e o líquido podem existir em equilíbrio. Para vários compostos químicos e ligas, é difícil definir o ponto de fusão, pois geralmente são uma mistura de vários elementos químicos.

Granito – Condutividade Térmica

A condutividade térmica do Granito é 3,2 W/(m·K).

As características de transferência de calor de um material sólido são medidas por uma propriedade chamada condutividade térmica, k (ou λ), medida em W/mK. É uma medida da capacidade de uma substância de transferir calor através de um material por condução. Observe que a lei de Fourier se aplica a toda matéria, independentemente de seu estado (sólido, líquido ou gasoso), portanto, também é definida para líquidos e gases.

A condutividade térmica da maioria dos líquidos e sólidos varia com a temperatura. Para vapores, também depende da pressão. No geral:

condutividade térmica - definição

A maioria dos materiais são quase homogêneos, portanto, geralmente podemos escrever k = k (T). Definições semelhantes estão associadas a condutividades térmicas nas direções y e z (ky, kz), mas para um material isotrópico a condutividade térmica é independente da direção de transferência, kx = ky = kz = k.

Granito – Calor Específico

O calor específico do Granito é 790 J/gK.

Calor específico, ou capacidade calorífica específica, é uma propriedade relacionada à energia interna que é muito importante na termodinâmica. As propriedades intensivas cvcp são definidas para substâncias compressíveis puras simples como derivadas parciais da energia interna u(T, v)  e entalpia h(T, p), respectivamente: 

onde os subscritos v e p denotam as variáveis ​​mantidas fixas durante a diferenciação. As propriedades cv e cp são chamadas de calores específicos (ou capacidades térmicas) porque, sob certas condições especiais, elas relacionam a mudança de temperatura de um sistema com a quantidade de energia adicionada pela transferência de calor. Suas unidades no SI são J/kg K ou J/molK.

Exemplo: cálculo de transferência de calor

Granito - Condutividade TérmicaA condutividade térmica é definida como a quantidade de calor (em watts) transferida através de uma área quadrada de material de determinada espessura (em metros) devido a uma diferença de temperatura. Quanto menor a condutividade térmica do material, maior a capacidade do material de resistir à transferência de calor.

Calcule a taxa de fluxo de calor através de uma parede de 3 m x 10 m de área (A = 30 m2). A parede tem 15 cm de espessura (L1) e é feita de Granito com condutividade térmica de k1 = 3,2 W/mK (isolante térmico ruim). Suponha que as temperaturas interna e externa  sejam 22 °C e -8 °C, e os  coeficientes de transferência de calor por convecção nos lados interno e externo sejam h1 = 10 W/m2K e h2 = 30 W/m2K, respectivamente. Note-se que estes coeficientes de convecção dependem muito especialmente das condições ambientais e interiores (vento, humidade, etc.).

Calcule o fluxo de calor (perda de calor) através desta parede.

Solução:

Como foi escrito, muitos dos processos de transferência de calor envolvem sistemas compostos e até envolvem uma combinação de  conduçãoconvecção. Com esses sistemas compostos, muitas vezes é conveniente trabalhar com um coeficiente global de transferência de calorconhecido como fator U. O fator U é definido por uma expressão análoga à lei de resfriamento de Newton:

Cálculo da transferência de calor - lei de resfriamento de Newton

O coeficiente global de transferência de calor está relacionado com a resistência térmica total e depende da geometria do problema.

Assumindo a transferência de calor unidimensional através da parede plana e desconsiderando a radiação, o coeficiente global de transferência de calor pode ser calculado como:

Cálculo de transferência de calor - fator U

coeficiente global de transferência de calor é então: U = 1 / (1/10 + 0,15/3,2 + 1/30) = 5,55 W/m2K

O fluxo de calor pode então ser calculado simplesmente como: q = 5,55 [W/m2K] x 30 [K] = 166,47 W/m2

A perda total de calor através desta parede será: qperda = q . A = 166,47 [L/m2] x 30 [m2] = 4994,22 W

Ponto de fusão dos Materiais

Tabela de Materiais - Ponto de Fusão

Condutividade Térmica dos Materiais

Tabela de Materiais - Condutividade Térmica

Capacidade de Calor dos Materiais

Tabela de Materiais - Capacidade de Calor

 

Lã de Pedra – Densidade – Capacidade Calorífica – Condutividade Térmica

Sobre Lã de Pedra

A Lã de Pedra, também conhecida como lã de rocha, é baseada em minerais naturais presentes em grandes quantidades em toda a terra, por exemplo, rocha vulcânica, tipicamente basalto ou dolomita. Além das matérias-primas, também pode ser adicionada ao processo lã de rocha reciclada e resíduos de escória da indústria metalúrgica. Combina resistência mecânica com bom desempenho térmico, segurança contra incêndio e adequação a altas temperaturas. 

lã de pedra propriedades densidade força preço

Resumo

Nome Lã de Pedra
Fase em STP sólido
Densidade 20 kg/m3
Resistência à tração 0,02 MPa
Força de rendimento N/D
Módulo de elasticidade de Young N/D
Dureza Brinell N/D
Ponto de fusão 997 °C
Condutividade térmica 0,03 W/mK
Capacidade de calor 700 J/gK
Preço 3 $/kg

Densidade da Lã de Pedra

As densidades típicas de várias substâncias estão à pressão atmosférica. A densidade é definida como a massa por unidade de volume. É uma propriedade intensiva, que é matematicamente definida como massa dividida pelo volume: ρ = m/V

Em palavras, a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância. A unidade padrão do SI é quilogramas por metro cúbico (kg/m3). A unidade padrão inglesa é libras de massa por pé cúbico (lbm/ft3).

A densidade da Lã de Pedra é de 20 kg/m3.

Exemplo: Densidade

Calcule a altura de um cubo feito de Lã de Pedra, que pesa uma tonelada métrica.

Solução:

A densidade é definida como a massa por unidade de volume. É matematicamente definido como massa dividida pelo volume: ρ = m/V.

Como o volume de um cubo é a terceira potência de seus lados (V = a3), a altura desse cubo pode ser calculada:

densidade do material - equação

A altura desse cubo é então a = 3,684 m.

Densidade de Materiais

Tabela de Materiais - Densidade de Materiais

Propriedades Mecânicas da Lã de Pedra

Força da Lã de Pedra

Na mecânica dos materiais, a resistência de um material é sua capacidade de suportar uma carga aplicada sem falha ou deformação plástica. A resistência dos materiais considera basicamente a relação entre as cargas externas aplicadas a um material e a deformação resultante ou alteração nas dimensões do material. Ao projetar estruturas e máquinas, é importante considerar esses fatores, para que o material selecionado tenha resistência adequada para resistir às cargas ou forças aplicadas e manter sua forma original.

A resistência de um material é sua capacidade de suportar esta carga aplicada sem falha ou deformação plástica. Para tensão de tração, a capacidade de um material ou estrutura de suportar cargas que tendem a se alongar é conhecida como resistência à tração final (UTS). O limite de escoamento ou tensão de escoamento é a propriedade do material definida como a tensão na qual um material começa a se deformar plasticamente, enquanto o ponto de escoamento é o ponto onde a deformação não linear (elástica + plástica) começa. No caso de tensão tracional de uma barra uniforme (curva tensão-deformação), a lei de Hooke descreve o comportamento de uma barra na região elástica. O módulo de elasticidade de Young é o módulo de elasticidade para tensões de tração e compressão no regime de elasticidade linear de uma deformação uniaxial e geralmente é avaliado por ensaios de tração.

Veja também: Resistência dos Materiais

Resistência à tração final da Lã de Pedra

A resistência à tração final da Lã de Pedra é de 0,02 MPa.

Força de rendimento da Lã de Pedra

A força de rendimento da Lã de Pedra é N/A.

Módulo de Elasticidade da Lã de Pedra

O módulo de elasticidade de Young da Lã de Pedra é N/A.

Dureza da Lã de Pedra

Na ciência dos materiais, a dureza é a capacidade de suportar  o recuo da superfície (deformação plástica localizada) e arranhõesO teste de dureza Brinell é um dos testes de dureza de indentação, que foi desenvolvido para testes de dureza. Nos testes Brinell, um penetrador esférico duro é forçado sob uma carga específica na superfície do metal a ser testado.

O número de dureza Brinell (HB) é a carga dividida pela área da superfície da indentação. O diâmetro da impressão é medido com um microscópio com uma escala sobreposta. O número de dureza Brinell é calculado a partir da equação:

número de dureza brinell - definição

A dureza Brinell da Lã de Pedra é aproximadamente N/A.

Veja também: Dureza dos Materiais

Exemplo: Força

Suponha uma haste de plástico, que é feita de lã de pedra. Esta haste de plástico tem uma área de seção transversal de 1 cm 2 . Calcule a força de tração necessária para atingir a resistência à tração final para este material, que é: UTS = 0,02 MPa.

Solução:

A tensão (σ)  pode ser igualada à carga por unidade de área ou à força (F) aplicada por área de seção transversal (A) perpendicular à força como:

resistência do material - equação

portanto, a força de tração necessária para atingir a resistência à tração final é:

F = UTS x A = 0,02 x 106 x 0,0001 = 2 N

Resistência dos Materiais

Tabela de Materiais - Resistência dos Materiais

Elasticidade dos Materiais

Tabela de Materiais - Elasticidade dos Materiais

Dureza dos Materiais

Tabela de Materiais - Dureza dos Materiais 

Propriedades Térmicas da Lã de Pedra

Lã de Pedra – Ponto de Fusão

O ponto de fusão da Lã de Pedra é 997 °C.

Observe que esses pontos estão associados à pressão atmosférica padrão. Em geral, a fusão é uma mudança de fase de uma substância da fase sólida para a líquida. O ponto de fusão de uma substância é a temperatura na qual essa mudança de fase ocorre. O ponto de fusão também define uma condição na qual o sólido e o líquido podem existir em equilíbrio. Para vários compostos químicos e ligas, é difícil definir o ponto de fusão, pois geralmente são uma mistura de vários elementos químicos.

Lã de Pedra – Condutividade Térmica

A condutividade térmica da Lã de Pedra é 0,03 W/(m·K).

As características de transferência de calor de um material sólido são medidas por uma propriedade chamada condutividade térmica, k (ou λ), medida em W/mK. É uma medida da capacidade de uma substância de transferir calor através de um material por condução. Observe que a lei de Fourier se aplica a toda matéria, independentemente de seu estado (sólido, líquido ou gasoso), portanto, também é definida para líquidos e gases.

A condutividade térmica da maioria dos líquidos e sólidos varia com a temperatura. Para vapores, também depende da pressão. No geral:

condutividade térmica - definição

A maioria dos materiais são quase homogêneos, portanto, geralmente podemos escrever k = k (T). Definições semelhantes estão associadas a condutividades térmicas nas direções y e z (ky, kz), mas para um material isotrópico a condutividade térmica é independente da direção de transferência, kx = ky = kz = k.

Lã de Pedra – Calor Específico

O calor específico da Lã de Pedra é 7 00 J/gK.

Calor específico, ou capacidade calorífica específica, é uma propriedade relacionada à energia interna que é muito importante na termodinâmica. As propriedades intensivas cvcp são definidas para substâncias compressíveis puras simples como derivadas parciais da energia interna u(T, v) e entalpia h(T, p), respectivamente: 

onde os subscritos vp denotam as variáveis ​​mantidas fixas durante a diferenciação. As propriedades cv e cp são chamadas de calores específicos (ou capacidades térmicas) porque, sob certas condições especiais, elas relacionam a mudança de temperatura de um sistema com a quantidade de energia adicionada pela transferência de calor. Suas unidades no SI são J/kgK ou J/molK.

Exemplo: cálculo de transferência de calor

Lã de Pedra - Condutividade TérmicaA condutividade térmica é definida como a quantidade de calor (em watts) transferida através de uma área quadrada de material de determinada espessura (em metros) devido a uma diferença de temperatura. Quanto menor a condutividade térmica do material, maior a capacidade do material de resistir à transferência de calor.

Calcule a taxa de fluxo de calor através de uma parede de 3 m x 10 m de área (A = 30 m2). A parede tem 15 cm de espessura (L1) e é feita de Lã de Pedra com condutividade térmica de k1 = 0,03 W/mK (isolante térmico ruim). Suponha que as temperaturas interna e externa  sejam 22 °C e -8 °C, e os coeficientes de transferência de calor por convecção nos lados interno e externo sejam h1 = 10 W/m2K e h2 = 30 W/m2K, respectivamente. Note-se que estes coeficientes de convecção dependem muito especialmente das condições ambientais e interiores (vento, humidade, etc.).

Calcule o fluxo de calor (perda de calor) através desta parede.

Solução:

Como foi escrito, muitos dos processos de transferência de calor envolvem sistemas compostos e até envolvem uma combinação de conduçãoconvecção. Com esses sistemas compostos, muitas vezes é conveniente trabalhar com um coeficiente global de transferência de calorconhecido como fator U. O fator U é definido por uma expressão análoga à lei de resfriamento de Newton:

Cálculo da transferência de calor - lei de resfriamento de Newton

O coeficiente global de transferência de calor está relacionado com a resistência térmica total e depende da geometria do problema.

Assumindo a transferência de calor unidimensional através da parede plana e desconsiderando a radiação, o coeficiente global de transferência de calor pode ser calculado como:

Cálculo de transferência de calor - fator U

coeficiente global de transferência de calor é então: U = 1 / (1/10 + 0,15/0,03 + 1/30) = 0,19 W/m2K

O fluxo de calor pode então ser calculado simplesmente como: q = 0,19 [W/m2K] x 30 [K] = 5,84 W/m2

A perda total de calor através desta parede será: qperda = q . A = 5,84 [P/m2] x 30 [m2] = 175,33 W

Ponto de fusão dos Materiais

Tabela de Materiais - Ponto de Fusão

Condutividade Térmica dos Materiais

Tabela de Materiais - Condutividade Térmica

Capacidade de Calor dos Materiais

Tabela de Materiais - Capacidade de Calor