Facebook Instagram Youtube Twitter

Chromium and Iron – Comparison – Properties

This article contains comparison of key thermal and atomic properties of chromium and iron, two comparable chemical elements from the periodic table. It also contains basic descriptions and applications of both elements. Chromium vs Iron.

chromium and iron - comparison

Compare chromium with another element

Copper - Properties - Price - Applications - Production

Iron - Properties - Price - Applications - Production

Zinc - Properties - Price - Applications - Production

Manganese - Properties - Price - Applications - Production

Molybdenum - Properties - Price - Applications - Production

Tungsten - Properties - Price - Applications - Production

Compare iron with another element

Carbon - Properties - Price - Applications - Production

Oxygen - Properties - Price - Applications - Production

Fluorine - Properties - Price - Applications - Production

Magnesium - Properties - Price - Applications - Production

Aluminium - Properties - Price - Applications - Production

Chlorine - Properties - Price - Applications - Production

Potassium - Properties - Price - Applications - Production

Calcium - Properties - Price - Applications - Production

Chromium - Properties - Price - Applications - Production

Manganese - Properties - Price - Applications - Production

Cobalt - Properties - Price - Applications - Production

Nickel - Properties - Price - Applications - Production

Copper - Properties - Price - Applications - Production

Zinc - Properties - Price - Applications - Production

Zirconium - Properties - Price - Applications - Production

Lead - Properties - Price - Applications - Production

Chromium and Iron – About Elements

Chromium

Chromium is a steely-grey, lustrous, hard and brittle metal which takes a high polish, resists tarnishing, and has a high melting point. A major development was the discovery that steel could be made highly resistant to corrosion and discoloration by adding metallic chromium to form stainless steel.

Iron

Iron is a metal in the first transition series. It is by mass the most common element on Earth, forming much of Earth’s outer and inner core. It is the fourth most common element in the Earth’s crust. Its abundance in rocky planets like Earth is due to its abundant production by fusion in high-mass stars.

Chromium in Periodic Table

Iron in Periodic Table

Source: www.luciteria.com

Chromium and Iron – Applications

Chromium

Chromium is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather. In metallurgy, Chromium increases hardness, strength, and corrosion resistance. The strengthening effect of forming stable metal carbides at the grain boundaries and the strong increase in corrosion resistance made chromium an important alloying material for steel. Generally speaking, the concentration specified for most grades is approximately 4%. This level appears to result in the best balance between hardness and toughness. Chromium plays an important role in the hardening mechanism and is considered irreplaceable. At higher temperatures, chromium contributes increased strength. It is ordinarily used for applications of this nature in conjunction with molybdenum. The resistance of stainless steels is based on passivation. For passivation to occur and remain stable, the Fe-Cr alloy must have a minimum chromium content of about 11% by weight, above which passivity can occur and below which it is impossible.

Iron

Iron is used in numerous sectors such as electronics, manufacturing, automotive, and construction and building. Iron is the most widely used of all the metals, accounting for over 90% of worldwide metal produc0tion. Its low cost and high strength often make it the material of choice material to withstand stress or transmit forces, such as the construction of machinery and machine tools, rails, automobiles, ship hulls, concrete reinforcing bars, and the load-carrying framework of buildings. Since pure iron is quite soft, it is most commonly combined with alloying elements to make steel. Steels are iron–carbon alloys that may contain appreciable concentrations of other alloying elements. Adding a small amount of non-metallic carbon to iron trades its great ductility for the greater strength. Due to its very-high strength, but still substantial toughness, and its ability to be greatly altered by heat treatment, steel is one of the most useful and common ferrous alloy in modern use. There are thousands of alloys that have different compositions and/or heat treatments. The mechanical properties are sensitive to the content of carbon, which is normally less than 1.0 wt%.

Chromium and Iron – Comparison in Table

Element Chromium Iron
Density 7.14 g/cm3 7.874 g/cm3
Ultimate Tensile Strength 550 MPa 540 MPa
Yield Strength 131 MPa 50 MPa
Young’s Modulus of Elasticity 279 GPa 211 GPa
Mohs Scale 8.5 4.5
Brinell Hardness 1120 MPa 490 MPa
Vickers Hardness 1060 MPa 608 MPa
Melting Point 1907 °C 1538 °C
Boiling Point 2671 °C 2861 °C
Thermal Conductivity 93.7 W/mK 80.2 W/mK
Thermal Expansion Coefficient 4.9 µm/mK 11.8 µm/mK
Specific Heat 0.45 J/g K 0.44 J/g K
Heat of Fusion 16.9 kJ/mol 13.8 kJ/mol
Heat of Vaporization 344.3 kJ/mol 349.6 kJ/mol