Facebook Instagram Youtube Twitter

Hierro blanco – Densidad – Resistencia – Dureza – Punto de fusión

Acerca del hierro blanco – Hierro fundido blanco

Como se escribió, los hierros fundidos son una de las aleaciones más complejas utilizadas en la industria. Debido al mayor contenido de carbono, la estructura del hierro fundido, a diferencia de la del acero , presenta una fase rica en carbono. Dependiendo principalmente de la composición, la velocidad de enfriamiento y el tratamiento de fusión, la fase rica en carbono puede solidificarse con la formación de un eutéctico estable (austenita-grafito) o metaestable (austenita-Fe 3 C).

Con un contenido de silicio más bajo (que contiene menos de 1.0% en peso de agente de grafitación de Si) y una velocidad de enfriamiento más rápida, el carbón en el hierro fundido precipita fuera de la masa fundida como la fase metaestable de cemento, Fe 3 C , en lugar de grafito. El producto de esta solidificación se conoce como hierro fundido blanco (también conocido como hierros refrigerados). Los hierros fundidos blancos son duros , quebradizos e imposibles de mecanizar, mientras que los hierros grises con grafito más blando son razonablemente fuertes y mecanizables. Una superficie de fractura de esta aleación tiene un aspecto blanco., por lo que se denomina hierro fundido blanco. Es difícil enfriar las piezas fundidas gruesas lo suficientemente rápido como para solidificar la masa fundida como hierro fundido blanco hasta el final. Sin embargo, se puede utilizar un enfriamiento rápido para solidificar una carcasa de hierro fundido blanco, después de lo cual el resto se enfría más lentamente para formar un núcleo de hierro fundido gris. Este tipo de fundición, a veces denominada » fundición fría «, tiene una superficie exterior más dura y un núcleo interior más resistente.

Precio de resistencia de densidad de propiedades de hierro blanco

Resumen

Nombre Hierro Blanco
Fase en STP sólido
Densidad 7770 kg / m3
Resistencia a la tracción 350 MPa
Límite de elastacidad N / A
Módulo de Young 175 GPa
Dureza Brinell 470 BHN
Punto de fusion 1260 ° C
Conductividad térmica 15-30 W / mK
Capacidad calorífica 540 J / g K
Precio 1,5 $ / kg

Densidad del hierro blanco

Las densidades típicas de varias sustancias se encuentran a presión atmosférica. La densidad  se define como la  masa por unidad de volumen . Es una  propiedad intensiva , que se define matemáticamente como masa dividida por volumen:  ρ = m / V

En palabras, la densidad (ρ) de una sustancia es la masa total (m) de esa sustancia dividida por el volumen total (V) ocupado por esa sustancia. La unidad estándar del SI es  kilogramos por metro cúbico  ( kg / m 3 ). La unidad de inglés estándar es  libras de masa por pie cúbico  ( lbm / ft 3 ).

La densidad del hierro blanco es de 7770 kg / m 3 .

Ejemplo: densidad

Calcula la altura de un cubo hecho de hierro blanco, que pesa una tonelada métrica.

Solución:

La densidad  se define como la  masa por unidad de volumen . Se define matemáticamente como masa dividida por volumen:

ρ = m / V

Como el volumen de un cubo es la tercera potencia de sus lados (V = a 3 ), la altura de este cubo se puede calcular:

densidad del material - ecuación

La altura de este cubo es entonces a = 0,505 m .

Densidad de materiales

Tabla de materiales - Densidad de materiales

Propiedades mecánicas del hierro fundido blanco

Los materiales se eligen con frecuencia para diversas aplicaciones porque tienen combinaciones deseables de características mecánicas. Para aplicaciones estructurales, las propiedades de los materiales son cruciales y los ingenieros deben tenerlas en cuenta.

Resistencia del hierro fundido blanco

En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.

Máxima resistencia a la tracción del hierro fundido blanco

La resistencia máxima a la tracción del hierro fundido blanco martensítico (ASTM A532 Clase 1 Tipo A) es 350 MPa.

Resistencia a la fluencia - Resistencia máxima a la tracción - Tabla de materialesLa máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación . Esto corresponde a la tensión máximaque puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva de tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores, como la preparación de la muestra,temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.

Módulo de Young

El módulo de Young del hierro fundido blanco martensítico (ASTM A532 Clase 1 Tipo A) es de 175 GPa.

El módulo de Young es el módulo elástico para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta un esfuerzo limitante, un cuerpo podrá recuperar sus dimensiones al retirar la carga. Las tensiones aplicadas hacen que los átomos de un cristal se muevan desde su posición de equilibrio. Todos los átomos se desplazan en la misma cantidad y aún mantienen su geometría relativa. Cuando se eliminan las tensiones, todos los átomos vuelven a sus posiciones originales y no se produce ninguna deformación permanente. Según la ley de Hooke , la tensión es proporcional a la deformación (en la región elástica) y la pendiente es el módulo de Young.. El módulo de Young es igual a la tensión longitudinal dividida por la deformación.

Dureza del hierro fundido blanco

La dureza Brinell del hierro fundido blanco (ASTM A532 Clase 1 Tipo A) es de aproximadamente 470 MPa.

Número de dureza BrinellEn la ciencia de los materiales, la dureza es la capacidad de resistir la hendidura de la superficie ( deformación plástica localizada ) y el rayado . La dureza es probablemente la propiedad del material menos definida porque puede indicar resistencia al rayado, resistencia a la abrasión, resistencia a la indentación o incluso resistencia a la deformación o deformación plástica localizada. La dureza es importante desde el punto de vista de la ingeniería porque la resistencia al desgaste por fricción o erosión por vapor, aceite y agua generalmente aumenta con la dureza.

La prueba de dureza Brinell es una de las pruebas de dureza por indentación, que se ha desarrollado para las pruebas de dureza. En las pruebas Brinell, se fuerza un penetrador esférico durobajo una carga específica en la superficie del metal que se va a probar. La prueba típica utiliza una bola de acero endurecido de 10 mm (0,39 pulg.) De diámetro  como penetrador con una fuerza de 3000 kgf (29,42 kN; 6,614 lbf). La carga se mantiene constante durante un tiempo determinado (entre 10 y 30 s). Para materiales más blandos, se usa una fuerza menor; para materiales más duros, una bola de carburo de tungsteno se sustituye por la bola de acero.

La prueba proporciona resultados numéricos para cuantificar la dureza de un material, que se expresa mediante el número de dureza Brinell – HB . El número de dureza Brinell está designado por las normas de prueba más comúnmente utilizadas (ASTM E10-14 [2] e ISO 6506-1: 2005) como HBW (H de dureza, B de Brinell y W del material del penetrador, tungsteno ( wolfram) carburo). En las normas anteriores se utilizaba HB o HBS para referirse a las medidas realizadas con penetradores de acero.

El número de dureza Brinell (HB) es la carga dividida por el área de la superficie de la muesca. El diámetro de la impresión se mide con un microscopio con una escala superpuesta. El número de dureza Brinell se calcula a partir de la ecuación:

Ensayo de dureza Brinell

Existe una variedad de métodos de prueba de uso común (por ejemplo, Brinell, Knoop , Vickers y Rockwell ). Hay tablas disponibles que correlacionan los números de dureza de los diferentes métodos de prueba donde la correlación es aplicable. En todas las escalas, un número de dureza alto representa un metal duro.

Ejemplo: resistencia

Suponga una varilla de plástico, que está hecha de carburo de boro. Esta varilla de plástico tiene un área de sección transversal de 1 cm 2 . Calcule la fuerza de tracción necesaria para lograr la resistencia a la tracción máxima de este material, que es: UTS = 350 MPa.

Solución:

La tensión (σ)  se puede equiparar a la carga por unidad de área o la fuerza (F) aplicada por área de sección transversal (A) perpendicular a la fuerza como:

resistencia del material - ecuación

por lo tanto, la fuerza de tracción necesaria para lograr la máxima resistencia a la tracción es:

F = UTS x A = 350 x 10 6 x 0,0001 = 35 000 N

Resistencia de materiales

Tabla de materiales: resistencia de los materiales

Elasticidad de materiales

Tabla de materiales: elasticidad de los materiales

Dureza de los materiales

Tabla de materiales: dureza de los materiales 

Propiedades térmicas del hierro fundido blanco

Las propiedades térmicas  de los materiales se refieren a la respuesta de los materiales a los cambios de  temperatura y a la aplicación de calor . A medida que un sólido absorbe energía en forma de calor, su temperatura aumenta y sus dimensiones aumentan. Pero los diferentes materiales reaccionan a la aplicación de calor de manera diferente .

La capacidad calorífica , la expansión térmica y la conductividad térmica son propiedades que a menudo son críticas en el uso práctico de sólidos.

Punto de fusión del hierro fundido blanco

El punto de fusión del acero de fundición blanca martensítica (ASTM A532 Clase 1 Tipo A) es de alrededor de 1260 ° C.

En general, la  fusión  es un  cambio  de fase de una sustancia de la fase sólida a la líquida. El  punto  de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El  punto de fusión  también define una condición en la que el sólido y el líquido pueden existir en equilibrio.

Conductividad térmica del hierro fundido blanco

La conductividad térmica del hierro fundido blanco martensítico (ASTM A532 Clase 1 Tipo A) es de 15 a 30 W / (mK).

Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada  conductividad térmica , k (o λ), medida en  W / mK . Es una medida de la capacidad de una sustancia para transferir calor a través de un material por  conducción . Tenga en cuenta que  la ley de Fourier se  aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo que también se define para líquidos y gases.

La  conductividad térmica  de la mayoría de los líquidos y sólidos varía con la temperatura. Para los vapores, también depende de la presión. En general:

conductividad térmica - definición

La mayoría de los materiales son casi homogéneos, por lo que normalmente podemos escribir  k = k (T) . Se asocian definiciones similares con las conductividades térmicas en las direcciones y y z (ky, kz), pero para un material isótropo, la conductividad térmica es independiente de la dirección de transferencia, kx = ky = kz = k.

Ejemplo: cálculo de transferencia de calor

Hierro blanco - Conductividad térmicaLa conductividad térmica se define como la cantidad de calor (en vatios) transferida a través de un área cuadrada de material de un espesor determinado (en metros) debido a una diferencia de temperatura. Cuanto menor sea la conductividad térmica del material, mayor será la capacidad del material para resistir la transferencia de calor.

Calcule la tasa de flujo de  calor a  través de una pared de 3 mx 10 m de área (A = 30 m 2 ). La pared tiene 15 cm de espesor (L 1 ) y está hecha de Hierro Blanco con una conductividad térmica  de k 1 = 30 W / mK (mal aislante térmico). Suponga que las temperaturas interior y exterior  son 22 ° C y -8 ° C, y los  coeficientes de transferencia de calor por convección  en los lados interior y exterior son h 1  = 10 W / m 2 K y h 2  = 30 W / m 2 K, respectivamente. Tenga en cuenta que estos coeficientes de convección dependen en gran medida, especialmente, de las condiciones ambientales e interiores (viento, humedad, etc.).

Calcule el flujo de calor ( pérdida de calor ) a través de esta pared.

Solución:

Como se escribió, muchos de los procesos de transferencia de calor involucran sistemas compuestos e incluso involucran una combinación de  conducción  y  convección . Con estos sistemas compuestos, a menudo es conveniente trabajar con un  coeficiente de transferencia de calor en general ,  conocido como un  factor U . El factor U se define mediante una expresión análoga a  la ley de enfriamiento de Newton :

Cálculo de transferencia de calor: ley de enfriamiento de Newton

El  coeficiente de transferencia de calor general  está relacionado con la  resistencia térmica total  y depende de la geometría del problema.

Suponiendo una transferencia de calor unidimensional a través de la pared plana y sin tener en cuenta la radiación, el  coeficiente de transferencia de calor general  se puede calcular como:

Cálculo de transferencia de calor - factor U

El coeficiente de transferencia de calor total  es entonces: U = 1 / (1/10 + 0,15 / 30 + 1/30) = 7,23 W / m 2 K

El flujo de calor se puede calcular entonces simplemente como: q = 7,23 [W / m 2 K] x 30 [K] = 216,87 W / m 2

La pérdida total de calor a través de esta pared será: pérdida  = q. A = 216,87 [W / m 2 ] x 30 [m 2 ] = 6506,02 W

Punto de fusión de materiales

Tabla de materiales - Punto de fusión

Conductividad térmica de materiales

Tabla de materiales: conductividad térmica

Capacidad calorífica de materiales

Tabla de materiales - Capacidad calorífica