Facebook Instagram Youtube Twitter

Electron 21 – UNS M12310 – Alliage de magnésium – Définition

Elektron 21, désigné par UNS M12310, est l’un des alliages avec une excellente résistance à la corrosion et une excellente coulabilité. Les produits coulés possèdent une microstructure à grains fins et une étanchéité à la pression.

Alliages de magnésiumLes alliages de magnésium sont des mélanges de magnésium et d’autres métaux d’alliage, généralement de l’aluminium, du zinc, du silicium, du manganèse, du cuivre et du zirconium. Étant donné que la caractéristique la plus remarquable du magnésium est sa densité, 1,7 g/cm3, ses alliages sont utilisés lorsque la légèreté est une considération importante (par exemple, dans les composants d’avions). Le magnésium a le point de fusion le plus bas (923 K (1202 °F)) de tous les métaux alcalino-terreux. Le magnésium pur a une structure cristalline HCP, est relativement mou et a un faible module élastique: 45 GPa. Les alliages de magnésium ont également une structure de réseau hexagonale, ce qui affecte les propriétés fondamentales de ces alliages. À température ambiante, le magnésium et ses alliages sont difficiles à travailler à froid en raison du fait que la déformation plastique du réseau hexagonal est plus compliquée que dans les métaux à réseau cubique comme l’aluminium, le cuivre et l’acier. Par conséquent, les alliages de magnésium sont généralement utilisés comme alliages coulés. Malgré la nature réactive de la poudre de magnésium pur, le magnésium métal et ses alliages ont une bonne résistance à la corrosion.

Utilisations des alliages de magnésium – Application

Les alliages de magnésium sont utilisés dans une grande variété d’applications structurelles et non structurelles. Les applications structurelles incluent les équipements automobiles, industriels, de manutention, commerciaux et aérospatiaux. Les alliages de magnésium sont utilisés pour les pièces qui fonctionnent à des vitesses élevées et doivent donc être légers pour minimiser les forces d’inertie. Les applications commerciales comprennent les outils portatifs, les ordinateurs portables, les bagages et les échelles, les automobiles (par exemple, les volants et les colonnes, les cadres de siège, les boîtiers de transmission). Magnox (alliage), dont le nom est une abréviation de « magnésium non oxydant », est composé à 99% de magnésium et 1% d’aluminium, et est utilisé dans le gainage des barres de combustible dans les réacteurs nucléaires magnox.

Électron 21 – UNS M12310

En général, Elektron est la marque déposée d’une large gamme d’alliages de magnésium fabriqués par une société britannique Magnesium Elektron Limited. Elektron 21, désigné par UNS M12310, est l’un des alliages avec une excellente résistance à la corrosion et une excellente coulabilité. Les produits coulés possèdent une microstructure à grains fins et une étanchéité à la pression. Cet alliage peut être facilement usiné. Les applications incluent le sport automobile et l’aérospatiale, car il possède une résistance élevée, un poids léger et d’excellentes caractéristiques d’amortissement des vibrations.

elektron 21 propriétés densité force prix

Résumé

Nom Électron 21
Phase à STP N / A
Densité 1800 kg/m3
Résistance à la traction ultime 280 MPa
Limite d’élasticité 145 MPa
Module de Young 45 GPa
Dureté Brinell 70 BHN
Point de fusion 550-640 °C
Conductivité thermique 116 W/mK
Capacité thermique 900 J/g·K
Prix 40 $/kg

Composition d’Elektron 21 – UNS M12310

Elektron 21 – UNS M12310 est composé de magnésium (96%), de néodyme (3%) et de gadolinium (1%). 

96%Magnésium dans le tableau périodique

3%Néodyme dans le tableau périodique

1%Gadolinium dans le tableau périodique

Applications d’Elektron 21 – UNS M12310

Les applications incluent le sport automobile et l’aérospatiale, car il possède une résistance élevée, un poids léger et d’excellentes caractéristiques d’amortissement des vibrations. Les alliages de magnésium sont utilisés dans une grande variété d’applications structurelles et non structurelles. Les applications structurelles incluent les équipements automobiles, industriels, de manutention, commerciaux et aérospatiaux. Les alliages de magnésium sont utilisés pour les pièces qui fonctionnent à des vitesses élevées et doivent donc être légers pour minimiser les forces d’inertie. Les applications commerciales comprennent les outils portatifs, les ordinateurs portables, les bagages et les échelles, les automobiles (par exemple, les volants et les colonnes, les cadres de siège, les boîtiers de transmission). 

Propriétés mécaniques d’Elektron 21 – UNS M12310

Force d’Elektron 21

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine.

La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique. Pour la contrainte de traction, la capacité d’un matériau ou d’une structure à supporter des charges tendant à s’allonger est appelée résistance ultime à la traction (UTS). La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. En cas de contrainte de traction d’une barre uniforme (courbe contrainte-déformation), la loi de Hooke décrit le comportement d’une barre dans la région élastique. Le module de Youngest le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction.

Voir aussi: Résistance des matériaux

Résistance à la traction ultime d’Elektron 21

La résistance à la traction ultime d’Elektron 21 est de 280 MPa.

Limite d’élasticité d’Elektron 21

La limite d’élasticité d’Elektron 21  est de 145 MPa.

Module de Young d’Elektron 21

Le module de Young d’Elektron 21 est de 45 GPa.

Dureté d’Elektron 21

En science des matériaux, la dureté est la capacité à résister à l’indentation de surface (déformation plastique localisée) et  aux rayuresLe test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un pénétrateur sphérique dur est forcé sous une charge spécifique dans la surface du métal à tester.

L’  indice de dureté Brinell (HB) est la charge divisée par la surface de l’indentation. Le diamètre de l’empreinte est mesuré avec un microscope à échelle superposée. Le nombre de dureté Brinell est calculé à partir de l’équation :

indice de dureté Brinell - définition

La dureté Brinell d’Elektron 21 est d’environ 70 BHN (converti).

Voir aussi: Dureté des matériaux

La résistance des matériaux

Tableau des matériaux - Résistance des matériaux

Élasticité des matériaux

Tableau des matériaux - Élasticité des matériaux

Dureté des matériaux

Tableau des matériaux - Dureté des matériaux 

Propriétés thermiques d’Elektron 21 – UNS M12310

Elektron 21 – Point de fusion

Le point de fusion d’Elektron 21 est de 550 à 640 °C.

Notez que ces points sont associés à la pression atmosphérique standard. En général, la fusion est un changement de phas  d’une substance de la phase solide à la phase liquide. Le point de fusion d’une substance est la température à laquelle ce changement de phase se produit. Le point de fusion définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre. Pour divers composés chimiques et alliages, il est difficile de définir le point de fusion, car il s’agit généralement d’un mélange de divers éléments chimiques.

Elektron 21 – Conductivité thermique

La conductivité thermique d’Elektron 21 est de 116 W/(m·K).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductivité thermique, k (ou λ), mesurée en W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par conduction. Notez que la loi de Fourier s’applique à toute matière, quel que soit son état (solide, liquide ou gaz), par conséquent, elle est également définie pour les liquides et les gaz.

La conductivité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire k = k (T). Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

Elektron 21 – Chaleur spécifique

La chaleur spécifique d’Elektron 21 est de 900  J/g K.

La chaleur spécifique, ou capacité thermique spécifique, est une propriété liée à l’énergie interne très importante en thermodynamique. Les propriétés intensives cv et cp sont définies pour des substances compressibles pures et simples comme des dérivées partielles de l’ énergie interne u(T, v) et de l’enthalpie h(T, p), respectivement: 

où les indices v et p désignent les variables maintenues fixes lors de la différenciation. Les propriétés cv et cp sont appelées chaleurs spécifiques (ou capacités calorifiques) car, dans certaines conditions particulières, elles relient le changement de température d’un système à la quantité d’énergie ajoutée par transfert de chaleur. Leurs unités SI sont J/kg K ou J/mol K.

Point de fusion des matériaux

Tableau des matériaux - Point de fusion

Conductivité thermique des matériaux

Tableau des matériaux - Conductivité thermique

Capacité calorifique des matériaux

Tableau des matériaux - Capacité calorifique

Propriétés et prix des autres matériaux

table-de-matériaux-en-résolution-8k

[/lgc_column]

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
Alliages de magnésium

Nous espérons que cet article, Elektron 21 – UNS M12310 – Alliage de magnésium, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.