À propos du sable
Le sable est un matériau granulaire composé de particules finement divisées de roches et de minéraux. La composition du sable varie en fonction des sources et des conditions rocheuses locales, mais le constituant le plus courant du sable dans les milieux continentaux intérieurs et les milieux côtiers non tropicaux est la silice (dioxyde de silicium ou SiO2), généralement sous forme de quartz. La silice est l’une des familles de matériaux les plus complexes et les plus abondantes, existant en tant que composé de plusieurs minéraux et en tant que produit synthétique.

Résumé
Nom | Sable |
Phase à STP | solide |
Densité | 1500kg/m3 |
Résistance à la traction ultime | N / A |
Limite d’élasticité | N / A |
Module d’élasticité de Young | N / A |
Dureté Brinell | N / A |
Point de fusion | 1577 °C |
Conductivité thermique | 0,25 W/mK |
Capacité thermique | 830 J/g·K |
Prix | 0,03 $/kg |
Composition du sable
La composition du sable varie en fonction des sources et des conditions rocheuses locales, mais le constituant le plus courant du sable dans les milieux continentaux intérieurs et les milieux côtiers non tropicaux est la silice (dioxyde de silicium ou SiO2), généralement sous forme de quartz. Le deuxième type de sable le plus courant est le carbonate de calcium, par exemple l’aragonite, qui a été principalement créée, au cours du dernier demi-milliard d’années, par diverses formes de vie, comme le corail et les crustacés.
Applications du sable

Le sable est une ressource non renouvelable à l’échelle des temps humains, et le sable adapté à la fabrication du béton est en forte demande. En raison de la croissance de la population et des villes et de l’activité de construction qui en résulte, il existe une énorme demande pour ces types spéciaux de sable, et les sources naturelles s’épuisent. Dans les industries de la poterie et de la verrerie, des sables quartzeux très purs sont utilisés comme source de silice. Des sables similaires sont nécessaires pour garnir les foyers des fours à acier acide.
Propriétés mécaniques du sable
Force du sable
En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine.
La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique. Pour la contrainte de traction, la capacité d’un matériau ou d’une structure à supporter des charges tendant à s’allonger est appelée résistance ultime à la traction (UTS). La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. En cas de contrainte de traction d’une barre uniforme (courbe contrainte-déformation), la loi de Hooke décrit le comportement d’une barre dans la région élastique. Le module d’élasticité de Youngest le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction.
Voir aussi : Résistance des matériaux
Résistance à la traction ultime du sable
La résistance à la traction ultime du sable est N/A.
Limite d’élasticité du sable
La limite d’élasticité du sable est N/A.
Module d’élasticité du sable
Le module d’élasticité de Young du sable est N/A.
Dureté du sable
En science des matériaux, la dureté est la capacité à résister à l’indentation de surface ( déformation plastique localisée ) et aux rayures . Le test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un pénétrateur sphérique dur est forcé sous une charge spécifique dans la surface du métal à tester.
L’ indice de dureté Brinell (HB) est la charge divisée par la surface de l’indentation. Le diamètre de l’empreinte est mesuré avec un microscope à échelle superposée. Le nombre de dureté Brinell est calculé à partir de l’équation :
La dureté Brinell du sable est d’environ N/A.
Voir aussi : Dureté des matériaux
Propriétés thermiques du sable
Sable – Point de fusion
Le point de fusion du sable est de 1577 °C .
Notez que ces points sont associés à la pression atmosphérique standard. En général, la fusion est un changement de phase d’une substance de la phase solide à la phase liquide. Le point de fusion d’une substance est la température à laquelle ce changement de phase se produit. Le point de fusion définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre. Pour divers composés chimiques et alliages, il est difficile de définir le point de fusion, car il s’agit généralement d’un mélange de divers éléments chimiques.
Sable – Conductivité thermique
La conductivité thermique du sable est de 0,25 W/(m·K) .
Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductivité thermique , k (ou λ), mesurée en W/mK . C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par conduction . Notez que la loi de Fourier s’applique à toute matière, quel que soit son état (solide, liquide ou gaz), par conséquent, elle est également définie pour les liquides et les gaz.
La conductivité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:
La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire k = k (T) . Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.
Sable – Chaleur spécifique
La chaleur spécifique du sable est de 830 J/g K .
La chaleur spécifique, ou capacité thermique spécifique, est une propriété liée à l’énergie interne très importante en thermodynamique. Les propriétés intensives c v et c p sont définies pour des substances compressibles pures et simples comme des dérivées partielles de l’ énergie interne u(T, v) et de l’ enthalpie h(T, p) , respectivement :
où les indices v et p désignent les variables maintenues fixes lors de la différenciation. Les propriétés c v et c p sont appelées chaleurs spécifiques (ou capacités calorifiques ) car, dans certaines conditions particulières, elles relient le changement de température d’un système à la quantité d’énergie ajoutée par transfert de chaleur. Leurs unités SI sont J/kg K ou J/mol K .
Propriétés et prix des autres matériaux
table-de-matériaux-en-résolution-8k