Glass – Material Table – Applications – Price

About Glass

Glass is a non-crystalline, often transparent amorphous solid. Glasses have widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Since glass is an amorphous (non-crystalline) solid, it is usually formed by the solidification of a melt without crystallisation. Glass is made by cooling molten ingredients such as silica sand with sufficient rapidity to prevent the formation of visible crystals. In some older books, the term has been used synonymously with glass. Nowadays, “glassy solid” or “amorphous solid” is considered to be the overarching concept, and glass the more special case: Glass is an amorphous solid that exhibits a glass transition. The glass you encounter most often is silicate glass, which consists mainly of silica or silicon dioxide, SiO2.

glass properties density strength price


Name Glass
Phase at STP N/A
Density 2500 kg/m3
Ultimate Tensile Strength 7 MPa
Yield Strength N/A
Young’s Modulus of Elasticity 80 GPa
Brinell Hardness 1550 BHN
Melting Point 1700 °C
Thermal Conductivity 1.05 W/mK
Heat Capacity 840 J/g K
Price 5 $/kg

Composition of Glass

The glass you encounter most often is silicate glass, which consists mainly of silica or silicon dioxide, SiO2. Silicon dioxide (SiO2) is a common fundamental constituent of glass. Sodium carbonate (Na2CO3, “soda”) is a common additive and acts to lowers the glass-transition temperature.

56%Silicon in Periodic Table

44%Oxygen in Periodic Table

Applications of Glass

Glass - Material Table - Applications - Price
Source: License: CC-BY SA 3.0

Glasses have widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Soda-lime sheet glass is typically used as transparent glazing material, typically as windows in external walls of buildings. Glass is an essential component of tableware and is typically used for water, beer and wine drinking glasses. Glass is a ubiquitous material in optics by virtue of its ability to refract, reflect, and transmit light.

Mechanical Properties of Glass

Strength of Glass

In mechanics of materials, the strength of a material is its ability to withstand an applied load without failure or plastic deformation. Strength of materials basically considers the relationship between the external loads applied to a material and the resulting deformation or change in material dimensions. In designing structures and machines, it is important to consider these factors, in order that the material selected will have adequate strength to resist applied loads or forces and retain its original shape.

Strength of a material is its ability to withstand this applied load without failure or plastic deformation. For tensile stress, the capacity of a material or structure to withstand loads tending to elongate is known as ultimate tensile strength (UTS). Yield strength or yield stress is the material property defined as the stress at which a material begins to deform plastically whereas yield point is the point where nonlinear (elastic + plastic) deformation begins. In case of tensional stress of a uniform bar (stress-strain curve), the Hooke’s law describes behaviour of a bar in the elastic region. The Young’s modulus of elasticity is the elastic modulus for tensile and compressive stress in the linear elasticity regime of a uniaxial deformation and is usually assessed by tensile tests.

See also: Strength of Materials

Ultimate Tensile Strength of Glass

Ultimate tensile strength of Glass is 7 MPa.

Yield Strength of Glass

Yield strength of Glass is N/A.

Modulus of Elasticity of Glass

The Young’s modulus of elasticity of Glass is 80 MPa.

Hardness of Glass

In materials science, hardness is the ability to withstand surface indentation (localized plastic deformation) and scratchingBrinell hardness test is one of indentation hardness tests, that has been developed for hardness testing. In Brinell tests, a hard, spherical indenter is forced under a specific load into the surface of the metal to be tested.

The Brinell hardness number (HB) is the load divided by the surface area of the indentation. The diameter of the impression is measured with a microscope with a superimposed scale. The Brinell hardness number is computed from the equation:

brinell hardness number - definition

Brinell hardness of Glass is approximately 1550 BHN (converted).

See also: Hardness of Materials

Strength of Materials

Material Table - Strength of Materials

Elasticity of Materials

Material Table - Elasticity of Materials

Hardness of Materials

Material Table - Hardness of Materials  

Thermal Properties of Glass

Glass – Melting Point

Melting point of Glass is 1700 °C.

Note that, these points are associated with the standard atmospheric pressure. In general, melting is a phase change of a substance from the solid to the liquid phase. The melting point of a substance is the temperature at which this phase change occurs. The melting point also defines a condition in which the solid and liquid can exist in equilibrium. For various chemical compounds and alloys, it is difficult to define the melting point, since they are usually a mixture of various chemical elements.

Glass – Thermal Conductivity

Thermal conductivity of Glass is 1.05 W/(m·K).

The heat transfer characteristics of a solid material are measured by a property called the thermal conductivity, k (or λ), measured in W/m.K. It is a measure of a substance’s ability to transfer heat through a material by conduction. Note that Fourier’s law applies for all matter, regardless of its state (solid, liquid, or gas), therefore, it is also defined for liquids and gases.

The thermal conductivity of most liquids and solids varies with temperature. For vapors, it also depends upon pressure. In general:

thermal conductivity - definition

Most materials are very nearly homogeneous, therefore we can usually write k = k (T). Similar definitions are associated with thermal conductivities in the y- and z-directions (ky, kz), but for an isotropic material the thermal conductivity is independent of the direction of transfer, kx = ky = kz = k.

Glass – Specific Heat

Specific heat of Glass is 840 J/g K.

Specific heat, or specific heat capacity, is a property related to internal energy that is very important in thermodynamics. The intensive properties cv and cp are defined for pure, simple compressible substances as partial derivatives of the internal energy u(T, v) and enthalpy h(T, p), respectively:

where the subscripts v and p denote the variables held fixed during differentiation. The properties cv and cp are referred to as specific heats (or heat capacities) because under certain special conditions they relate the temperature change of a system to the amount of energy added by heat transfer. Their SI units are J/kg K or J/mol K.

Melting Point of Materials

Material Table - Melting Point

Thermal Conductivity of Materials

Material Table - Thermal Conductivity

Heat Capacity of Materials

Material Table - Heat Capacity

Properties and prices of other materials