Facebook Instagram Youtube Twitter

Carbone et Azote – Comparaison – Propriétés

Cet article contient une comparaison des principales propriétés thermiques et atomiques du carbone et de l’azote, deux éléments chimiques comparables du tableau périodique. Il contient également des descriptions de base et des applications des deux éléments. Carbone contre Azote.

carbone et azote - comparaison

Comparer le carbone avec un autre élément

Hydrogène - Propriétés - Prix - Applications - Production

Bore - Propriétés - Prix - Applications - Production

Oxygène - Propriétés - Prix - Applications - Production

Aluminium - Propriétés - Prix - Applications - Production

Azote - Propriétés - Prix - Applications - Production

Fer - Propriétés - Prix - Applications - Production

Chlore - Propriétés - Prix - Applications - Production

Brome - Propriétés - Prix - Applications - Production

Comparer l'azote avec un autre élément

Hydrogène - Propriétés - Prix - Applications - Production

Hélium - Propriétés - Prix - Applications - Production

Lithium - Propriétés - Prix - Applications - Production

Béryllium - Propriétés - Prix - Applications - Production

Carbone - Propriétés - Prix - Applications - Production

Oxygène - Propriétés - Prix - Applications - Production

Phosphore - Propriétés - Prix - Applications - Production

Carbone et Azote – À propos des éléments

Carbone

Il est non métallique et tétravalent, ce qui rend quatre électrons disponibles pour former des liaisons chimiques covalentes. Le carbone est l’un des rares éléments connus depuis l’Antiquité. Le carbone est le 15e élément le plus abondant de la croûte terrestre et le quatrième élément le plus abondant dans l’univers en masse après l’hydrogène, l’hélium et l’oxygène.

Azote

L’azote est un gaz non réactif incolore et inodore qui forme environ 78 % de l’atmosphère terrestre. L’azote liquide (fabriqué par distillation de l’air liquide) bout à 77,4 kelvins (-195,8°C) et est utilisé comme liquide de refroidissement.

Carbone dans le tableau périodique

Azote dans le tableau périodique

Source : www.luciteria.com

Carbone et Azote – Applications

Carbone

La principale utilisation économique du carbone autre que la nourriture et le bois se présente sous la forme d’hydrocarbures, notamment le gaz méthane et le pétrole brut (pétrole). Le graphite et les diamants sont deux allotropes importants du carbone qui ont de nombreuses applications. Les utilisations du carbone et de ses composés sont extrêmement variées. Il peut former des alliages avec le fer, dont le plus courant est l’acier au carbone. Le carbone est un élément non métallique, qui est un élément d’alliage important dans tous les matériaux à base de métaux ferreux. Le carbone est toujours présent dans les alliages métalliques, c’est-à-dire dans toutes les nuances d’acier inoxydable et les alliages résistants à la chaleur. Le carbone est un austénitisant très puissant et augmente la résistance de l’acier. En fait, c’est le principal élément durcissant et il est essentiel à la formation de la cémentite, du Fe3C, de la perlite, de la sphéroïdite et de la martensite fer-carbone. L’ajout d’une petite quantité de carbone non métallique au fer échange sa grande ductilité contre une plus grande résistance. Le graphite est combiné avec des argiles pour former la «mine» utilisée dans les crayons utilisés pour écrire et dessiner. Il est également utilisé comme lubrifiant et pigment, comme matériau de moulage dans la fabrication du verre, dans les électrodes pour piles sèches et dans la galvanoplastie et l’électroformage, dans les balais des moteurs électriques et comme modérateur de neutrons dans les réacteurs nucléaires. Le charbon de bois a été utilisé depuis les temps les plus reculés pour un large éventail d’usages, y compris l’art et la médecine, mais son utilisation la plus importante a été de loin comme combustible métallurgique. Les fibres de carbone sont utilisées là où un faible poids, une rigidité élevée, une conductivité élevée ou lorsque l’apparence du tissage en fibre de carbone est souhaitée. Le graphite est combiné avec des argiles pour former la «mine» utilisée dans les crayons utilisés pour écrire et dessiner. Il est également utilisé comme lubrifiant et pigment, comme matériau de moulage dans la fabrication du verre, dans les électrodes pour piles sèches et dans la galvanoplastie et l’électroformage, dans les balais des moteurs électriques et comme modérateur de neutrons dans les réacteurs nucléaires. Le charbon de bois a été utilisé depuis les temps les plus reculés pour un large éventail d’usages, y compris l’art et la médecine, mais son utilisation la plus importante a été de loin comme combustible métallurgique. Les fibres de carbone sont utilisées là où un faible poids, une rigidité élevée, une conductivité élevée ou lorsque l’apparence du tissage en fibre de carbone est souhaitée. Le graphite est combiné avec des argiles pour former la «mine» utilisée dans les crayons utilisés pour écrire et dessiner. Il est également utilisé comme lubrifiant et pigment, comme matériau de moulage dans la fabrication du verre, dans les électrodes pour piles sèches et dans la galvanoplastie et l’électroformage, dans les balais des moteurs électriques et comme modérateur de neutrons dans les réacteurs nucléaires. Le charbon de bois a été utilisé depuis les temps les plus reculés pour un large éventail d’usages, y compris l’art et la médecine, mais son utilisation la plus importante a été de loin comme combustible métallurgique. Les fibres de carbone sont utilisées là où un faible poids, une rigidité élevée, une conductivité élevée ou lorsque l’apparence du tissage en fibre de carbone est souhaitée. dans les balais des moteurs électriques et comme modérateur de neutrons dans les réacteurs nucléaires. Le charbon de bois a été utilisé depuis les temps les plus reculés pour un large éventail d’usages, y compris l’art et la médecine, mais son utilisation la plus importante a été de loin comme combustible métallurgique. Les fibres de carbone sont utilisées là où un faible poids, une rigidité élevée, une conductivité élevée ou lorsque l’apparence du tissage en fibre de carbone est souhaitée. dans les balais des moteurs électriques et comme modérateur de neutrons dans les réacteurs nucléaires. Le charbon de bois a été utilisé depuis les temps les plus reculés pour un large éventail d’usages, y compris l’art et la médecine, mais son utilisation la plus importante a été de loin comme combustible métallurgique. Les fibres de carbone sont utilisées là où un faible poids, une rigidité élevée, une conductivité élevée ou lorsque l’apparence du tissage en fibre de carbone est souhaitée.

Azote

L’azote sous diverses formes chimiques joue un rôle majeur dans un grand nombre de problèmes environnementaux. Les applications des composés azotés sont naturellement extrêmement variées du fait de l’immensité de cette classe: ainsi, seules les applications de l’azote pur lui-même seront considérées ici. Les deux tiers de l’azote produit par l’industrie sont vendus sous forme de gaz et le tiers restant sous forme liquide. En métallurgie, la nitruration est un processus de cémentation dans lequel la concentration en azote de surface d’un ferreux est augmentée par diffusion à partir du milieu environnant pour créer une surface cémentée. La nitruration produit une surface de produit dure et très résistante à l’usure (profondeurs peu profondes) avec une bonne capacité de charge de contact, une bonne résistance à la fatigue par flexion et une excellente résistance au grippage. L’ammoniac et les nitrates produits synthétiquement sont les principaux engrais industriels, et les nitrates d’engrais sont des polluants clés dans l’eutrophisation des systèmes d’eau. Outre son utilisation dans les engrais et les réserves d’énergie, l’azote est un constituant de composés organiques aussi divers que le Kevlar utilisé dans les tissus à haute résistance et le cyanoacrylate utilisé dans la superglue.

Carbone et Azote – Comparaison dans le tableau

Élément Carbone Azote
Densité 2,26 g/cm3 0,00125g/cm3
Résistance à la traction ultime 15 MPa (graphite) ; 3500 MPa (fibre de carbone) N / A
Limite d’élasticité N / A N / A
Module de Young 4,1 GPa (graphite); 228 GPa (fibre de carbone) N / A
Échelle de Mohs 0,8 (graphite) N / A
Dureté Brinell N / A N / A
Dureté Vickers N / A N / A
Point de fusion 4099°C -209,9°C
Point d’ébullition 4527°C -195,8°C
Conductivité thermique 129 W/mK 0,02598 W/mK
Coefficient de dilatation thermique 0,8 µm/mK N / A
Chaleur spécifique 0,71 J/g·K 1,04 J/g·K
Température de fusion N / A (N2) 0,7204 kJ/mole
Chaleur de vaporisation 355,8 kJ/mol (N2) 5,56 kJ/mole