Facebook Instagram Youtube Twitter

Titane et Tungstène – Comparaison – Propriétés

Cet article contient une comparaison des principales propriétés thermiques et atomiques du titane et du tungstène, deux éléments chimiques comparables du tableau périodique. Il contient également des descriptions de base et des applications des deux éléments. Titane vs Tungstène.

titane et tungstène - comparaison

Comparer le titane avec un autre élément

Aluminium - Propriétés - Prix - Applications - Production

Vanadium - Propriétés - Prix - Applications - Production

Tungstène - Propriétés - Prix - Applications - Production

Or - Propriétés - Prix - Applications - Production

Zinc - Propriétés - Prix - Applications - Production

Zirconium - Propriétés - Prix - Applications - Production

Niobium - Propriétés - Prix - Applications - Production

Tantale - Propriétés - Prix - Applications - Production

Cuivre - Propriétés - Prix - Applications - Production

Uranium - Propriétés - Prix - Applications - Production

Comparer le tungstène avec un autre élément

Titane - Propriétés - Prix - Applications - Production

Chrome - Propriétés - Prix - Applications - Production

Cobalt - Propriétés - Prix - Applications - Production

Zirconium - Propriétés - Prix - Applications - Production

Molybdène - Propriétés - Prix - Applications - Production

Platine - Propriétés - Prix - Applications - Production

Rhénium - Propriétés - Prix - Applications - Production

Or - Propriétés - Prix - Applications - Production

Iridium - Propriétés - Prix - Applications - Production

Titane et Tungstène – À propos des éléments

Titane

Le titane est un métal de transition brillant avec une couleur argentée, une faible densité et une résistance élevée. Le titane est résistant à la corrosion dans l’eau de mer, l’eau régale et le chlore. Le titane peut être utilisé dans les condenseurs de surface. Ces condenseurs utilisent des tubes généralement en acier inoxydable, en alliages de cuivre ou en titane selon plusieurs critères de sélection (comme la conductivité thermique ou la résistance à la corrosion). Les tubes de condenseur en titane sont généralement le meilleur choix technique, mais le titane est un matériau très coûteux et l’utilisation de tubes de condenseur en titane est associée à des coûts initiaux très élevés.

Tungstène

Le tungstène est un métal rare présent naturellement sur Terre presque exclusivement dans des composés chimiques. Le tungstène est un matériau intrinsèquement cassant et dur, ce qui le rend difficile à travailler.

Titane dans le tableau périodique

Tungstène dans le tableau périodique

Source : www.luciteria.com

Titane et Tungstène – Applications

Titane

Les deux propriétés les plus utiles du métal sont la résistance à la corrosion et le rapport résistance/densité, le plus élevé de tous les éléments métalliques. La résistance à la corrosion des alliages de titane à des températures normales est exceptionnellement élevée. Ces propriétés déterminent l’application du titane et de ses alliages. La première application de production de titane remonte à 1952, pour les nacelles et les pare-feu de l’avion de ligne Douglas DC-7. Une résistance spécifique élevée, une bonne résistance à la fatigue et une bonne durée de vie au fluage, ainsi qu’une bonne ténacité à la rupture sont des caractéristiques qui font du titane un métal préféré pour les applications aérospatiales. Les applications aérospatiales, y compris l’utilisation dans les composants structurels (cellule) et les moteurs à réaction, représentent toujours la plus grande part de l’utilisation des alliages de titane. Sur l’avion supersonique SR-71, le titane a été utilisé pour 85% de la structure. Grâce à une très grande inertie,

Tungstène

Le tungstène est un métal largement utilisé. Environ la moitié du tungstène est consommée pour la production de matériaux durs – à savoir le carbure de tungstène – le reste étant principalement utilisé dans les alliages et les aciers. L’exploitation minière et le traitement des minéraux exigent des machines et des composants résistants à l’usure, car les énergies et les masses des corps en interaction sont importantes. Pour cela, les matériaux les plus résistants à l’usure doivent être utilisés. Par exemple, le carbure de tungstène est largement utilisé dans l’exploitation minière dans les trépans de forage à marteau supérieur, les marteaux de fond de trou, les couteaux à rouleaux, les burins de charrue à longue paroi, les pics de cisaillement à longue paroi, les alésoirs de forage ascendant et les tunneliers. Les 40 % restants sont généralement utilisés pour fabriquer divers alliages et aciers spéciaux, des électrodes, des filaments, des fils, ainsi que divers composants pour des applications électriques, électroniques, de chauffage, d’éclairage et de soudage.

Titane et Tungstène – Comparaison dans le tableau

Élément Titane Tungstène
Densité 4,507 g/cm3 19,25 g/cm3
Résistance à la traction ultime 434 MPa, 293 MPa (pur) 980 MPa
Limite d’élasticité 380 MPa 750 MPa
Module de Young 116 GPa 411 GPa
Échelle de Mohs 6 7,5
Dureté Brinell 700 – 2700 MPa 3000 MPa
Dureté Vickers 800 – 3400 MPa 3500 MPa
Point de fusion 1668°C 3410°C
Point d’ébullition 3287°C 59300°C
Conductivité thermique 21,9 W/mK 170W/mK
Coefficient de dilatation thermique 8,6 µm/mK 4,5 µm/mK
Chaleur spécifique 0,52 J/g·K 0,13 J/g·K
Température de fusion 15,45 kJ/mole 35,4 kJ/mole
Chaleur de vaporisation 421 kJ/mole 824 kJ/mol