Modulus of Elasticity of Chemical Elements – Young – Shear – Bulk

Periodic Table of Elements
1
H

Hydrogen

N/A

2
He

Helium

N/A

3
Li

Lithium

4.9 GPa

4
Be

Beryllium

287 GPa

5
B

Boron

N/A

6
C

Carbon

4.1 GPa (graphite); 228 GPa (carbon fiber)

7
N

Nitrogen

N/A

8
O

Oxygen

N/A

9
F

Fluorine

N/A

10
Ne

Neon

N/A

11
Na

Sodium

10 GPa

12
Mg

Magnesium

45 GPa

13
Al

Aluminium

70 GPa

14
Si

Silicon

150 GPa

15
P

Phosphorus

N/A

16
S

Sulfur

N/A

17
Cl

Chlorine

N/A

18
Ar

Argon

N/A

19
K

Potassium

3.55 GPa

20
Ca

Calcium

20 GPa

21
Sc

Scandium

74.4 GPa

22
Ti

Titanium

116 GPa

23
V

Vanadium

128 GPa

24
Cr

Chromium

279 GPa

25
Mn

Manganese

198 GPa

26
Fe

Iron

211 GPa

27
Co

Cobalt

209 GPa

28
Ni

Nickel

200 GPa

29
Cu

Copper

120 GPa

30
Zn

Zinc

108 GPa

31
Ga

Gallium

9.8 GPa

32
Ge

Germanium

103 GPa

33
As

Arsenic

8 GPa

34
Se

Selenium

10 GPa

35
Br

Bromine

N/A

36
Kr

Krypton

N/A

37
Rb

Rubidium

2.4 GPa

38
Sr

Strontium

15.7 GPa

39
Y

Yttrium

63.5 GPa

40
Zr

Zirconium

88 GPa

41
Nb

Niobium

105 GPa

42
Mo

Molybdenum

329 GPa

43
Tc

Technetium

N/A

44
Ru

Ruthenium

447 GPa

45
Rh

Rhodium

380 GPa

46
Pd

Palladium

121 GPa

47
Ag

Silver

83 GPa

48
Cd

Cadmium

50 GPa

49
In

Indium

11 GPa

50
Sn

Tin

50 GPa

51
Sb

Antimony

55 GPa

52
Te

Tellurium

43 GPa

53
I

Iodine

N/A

54
Xe

Xenon

N/A

55
Cs

Caesium

1.7 GPa

56
Ba

Barium

13 GPa

57-71

 

Lanthanoids

 

72
Hf

Hafnium

78 GPa

73
Ta

Tantalum

186 GPa

74
W

Tungsten

411 GPa

75
Re

Rhenium

463 GPa

76
Os

Osmium

N/A

77
Ir

Iridium

528 GPa

78
Pt

Platinum

168 GPa

79
Au

Gold

79 GPa

80
Hg

Mercury

N/A

81
Tl

Thallium

8 GPa

82
Pb

Lead

16 GPa

83
Bi

Bismuth

32 GPa

84
Po

Polonium

N/A

85
At

Astatine

N/A

86
Rn

Radon

N/A

87
Fr

Francium

N/A

88
Ra

Radium

N/A

89-103

 

Actinoids

 

104
Rf

Rutherfordium

N/A

105
Db

Dubnium

N/A

106
Sg

Seaborgium

N/A

107
Bh

Bohrium

N/A

108
Hs

Hassium

N/A

109
Mt

Meitnerium

N/A

110
Ds

Darmstadtium

N/A

111
Rg

Roentgenium

N/A

112
Cn

Copernicium

N/A

113
Nh

Nihonium

N/A

114
Fl

Flerovium

N/A

115
Mc

Moscovium

N/A

116
Lv

Livermorium

N/A

117
Ts

Tennessine

N/A

118
Og

Oganesson

N/A

57
La

Lanthanum

36.6. GPa

58
Ce

Cerium

33.6 GPa

59
Pr

Praseodymium

37.3 GPa

60
Nd

Neodymium

41.4 GPa

61
Pm

Promethium

46 GPa

62
Sm

Samarium

49.7 GPa

63
Eu

Europium

18.2 GPa

64
Gd

Gadolinium

54.8 GPa

65
Tb

Terbium

55.7 GPa

66
Dy

Dysprosium

61.4 GPa

67
Ho

Holmium

64.8 GPa

68
Er

Erbium

69.9 GPa

69
Tm

Thulium

74 GPa

70
Yb

Ytterbium

23.9 GPa

71
Lu

Lutetium

68.6 GPa

89
Ac

Actinium

N/A

90
Th

Thorium

79 GPa

91
Pa

Protactinium

N/A

92
U

Uranium

208 GPa

93
Np

Neptunium

N/A

94
Pu

Plutonium

N/A

95
Am

Americium

N/A

96
Cm

Curium

N/A

97
Bk

Berkelium

N/A

98
Cf

Californium

N/A

99
Es

Einsteinium

N/A

100
Fm

Fermium

N/A

101
Md

Mendelevium

N/A

102
No

Nobelium

N/A

103
Lr

Lawrencium

N/A

Modulus of Elasticity of Chemical Elements

Hooke's law - stress-strain curveIn case of tensional stress of a uniform bar (stress-strain curve), the Hooke’s law describes behaviour of a bar in the elastic region. In this region, the elongation of the bar is directly proportional to the tensile force and the length of the bar and inversely proportional to the cross-sectional area and the modulus of elasticity. Up to a limiting stress, a body will be able to recover its dimensions on removal of the load. The applied stresses cause the atoms in a crystal to move from their equilibrium position. All the atoms are displaced the same amount and still maintain their relative geometry. When the stresses are removed, all the atoms return to their original positions and no permanent deformation occurs. According to the Hooke’s law, the stress is proportional to the strain (in the elastic region), and the slope is Young’s modulus.

Hooke's law - equation

We can extend the same idea of relating stress to strain to shear applications in the linear region, relating shear stress to shear strain to create Hooke’s law for shear stress:

Hooke’s law for shear stress

For isotropic materials within the elastic region, you can relate Poisson’s ratio (ν), Young’s modulus of elasticity (E), and the shear modulus of elasticity (G):

Hooke’s law - poissons ratio

The elastic moduli relevant to polycrystalline materials:

  • Young's Modulus of Elasticity - Table of MaterialsYoung’s Modulus of Elasticity. The Young’s modulus of elasticity is the elastic modulus for tensile and compressive stress in the linear elasticity regime of a uniaxial deformation and is usually assessed by tensile tests.
  • Shear Modulus of Elasticity. The shear modulus, or the modulus of rigidity, is derived from the torsion of a cylindrical test piece. It describes the material’s response to shear stress. Its symbol is G. The shear modulus is one of several quantities for measuring the stiffness of materials and it arises in the generalized Hooke’s law.
  • Bulk Modulus of Elasticity. The bulk modulus of elasticity is describes volumetric elasticity, or the tendency of an object to deform in all directions when uniformly loaded in all directions. For example, it describes the elastic response to hydrostatic pressure and equilateral tension (like the pressure at the bottom of the ocean or a deep swimming pool). It is also the property of a material that determines the elastic response to the application of stress. For a fluid, only the bulk modulus is meaningful.

Properties of other elements