Facebook Instagram Youtube Twitter

Oxygen and Fluorine – Comparison – Properties

This article contains comparison of key thermal and atomic properties of oxygen and fluorine, two comparable chemical elements from the periodic table. It also contains basic descriptions and applications of both elements. Oxygen vs Fluorine.

oxygen and fluorine - comparison

Compare oxygen with another element

Sodium - Properties - Price - Applications - Production

Fluorine - Properties - Price - Applications - Production

Magnesium - Properties - Price - Applications - Production

Aluminium - Properties - Price - Applications - Production

Silicon - Properties - Price - Applications - Production

Sulfur - Properties - Price - Applications - Production

Chlorine - Properties - Price - Applications - Production

Potassium - Properties - Price - Applications - Production

Calcium - Properties - Price - Applications - Production

Iron - Properties - Price - Applications - Production

Hydrogen - Properties - Price - Applications - Production

Helium - Properties - Price - Applications - Production

Lithium - Properties - Price - Applications - Production

Beryllium - Properties - Price - Applications - Production

Boron - Properties - Price - Applications - Production

Carbon - Properties - Price - Applications - Production

Compare fluorine with another element

Chlorine - Properties - Price - Applications - Production

Neon - Properties - Price - Applications - Production

Iron - Properties - Price - Applications - Production

Calcium - Properties - Price - Applications - Production

Aluminium - Properties - Price - Applications - Production

Hydrogen - Properties - Price - Applications - Production

Oxygen - Properties - Price - Applications - Production

Oxygen and Fluorine – About Elements

Oxygen

Oxygen is a colourless, odourless reactive gas, the chemical element of atomic number 8 and the life-supporting component of the air. It is a member of the chalcogen group on the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well as with other compounds. By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium.

Fluorine

Fluorine is the lightest halogen and exists as a highly toxic pale yellow diatomic gas at standard conditions. As the most electronegative element, it is extremely reactive: almost all other elements, including some noble gases, form compounds with fluorine.

Oxygen in Periodic Table

Fluorine in Periodic Table

Source: www.luciteria.com

Oxygen and Fluorine – Applications

Oxygen

Common uses of oxygen include production of steel, plastics and textiles, brazing, welding and cutting of steels and other metals, rocket propellant, oxygen therapy, and life support systems in aircraft, submarines, spaceflight and diving. Smelting of iron ore into steel consumes 55% of commercially produced oxygen. In this process, oxygen is injected through a high-pressure lance into molten iron, which removes sulfur impurities and excess carbon as the respective oxides, sulfur dioxide and carbon dioxide. Uptake of oxygen from the air is the essential purpose of respiration, so oxygen supplementation is used in medicine. Treatment not only increases oxygen levels in the patient’s blood, but has the secondary effect of decreasing resistance to blood flow in many types of diseased lungs, easing work load on the heart.

Fluorine

Owing to the expense of refining pure fluorine, most commercial applications use fluorine compounds, with about half of mined fluorite used in steelmaking. The rest of the fluorite is converted into corrosive hydrogen fluoride en route to various organic fluorides, or into cryolite, which plays a key role in aluminium refining. Most commercial uranium enrichment processes (gaseous diffusion and the gas centrifuge method) require the uranium to be in a gaseous form, therefore the uranium oxide concentrate must be first converted to uranium hexafluoride, which is a gas at relatively low temperatures. Molecules containing a carbon–fluorine bond often have very high chemical and thermal stability; their major uses are as refrigerants, electrical insulation and cookware, the last as PTFE (Teflon).

Oxygen and Fluorine – Comparison in Table

Element Oxygen Fluorine
Density 0.00125 g/cm3 0.0017 g/cm3
Ultimate Tensile Strength N/A N/A
Yield Strength N/A N/A
Young’s Modulus of Elasticity N/A N/A
Mohs Scale N/A N/A
Brinell Hardness N/A N/A
Vickers Hardness N/A N/A
Melting Point -209.9 °C -219.8 °C
Boiling Point -195.8 °C -188.1 °C
Thermal Conductivity 0.02598 W/mK 0.0279 W/mK
Thermal Expansion Coefficient N/A N/A
Specific Heat 1.04 J/g K 0.82 J/g K
Heat of Fusion (N2) 0.7204 kJ/mol 0.2552 kJ/mol
Heat of Vaporization (N2) 5.56 kJ/mol 3.2698 kJ/mol