Facebook Instagram Youtube Twitter

Boro e Oxigênio – Comparação – Propriedades

Este artigo contém uma comparação das principais propriedades térmicas e atômicas do boro e do oxigênio, dois elementos químicos comparáveis ​​da tabela periódica. Ele também contém descrições básicas e aplicações de ambos os elementos. Boro vs. Oxigênio.

boro e oxigênio - comparação

Comparar Boro com outro elemento

Oxygen - Properties - Price - Applications - Production

Nitrogen - Properties - Price - Applications - Production

Chlorine - Properties - Price - Applications - Production

Carbon - Properties - Price - Applications - Production

Silicon - Properties - Price - Applications - Production

Compare Oxigênio com outro elemento

Sodium - Properties - Price - Applications - Production

Fluorine - Properties - Price - Applications - Production

Magnesium - Properties - Price - Applications - Production

Aluminium - Properties - Price - Applications - Production

Silicon - Properties - Price - Applications - Production

Sulfur - Properties - Price - Applications - Production

Chlorine - Properties - Price - Applications - Production

Potassium - Properties - Price - Applications - Production

Calcium - Properties - Price - Applications - Production

Iron - Properties - Price - Applications - Production

Hydrogen - Properties - Price - Applications - Production

Helium - Properties - Price - Applications - Production

Lithium - Properties - Price - Applications - Production

Beryllium - Properties - Price - Applications - Production

Boron - Properties - Price - Applications - Production

Carbon - Properties - Price - Applications - Production

Boro e Oxigênio – Sobre Elementos

Boro

Concentrações significativas de boro ocorrem na Terra em compostos conhecidos como minerais de borato. Existem mais de 100 minerais de borato diferentes, mas os mais comuns são: bórax, quernita, ulexita etc. O boro natural consiste principalmente em dois isótopos estáveis, 11B (80,1%) e 10B (19,9%). Na indústria nuclear, o boro é comumente usado como absorvedor de nêutrons devido à alta seção transversal de nêutrons do isótopo 10B. Sua seção de choque de reação (n,alfa) para nêutrons térmicos é de cerca de 3840 barns (para nêutrons de 0,025 eV). O isótopo 11B tem seção transversal de absorção para nêutrons térmicos de cerca de 0,005 barns (para nêutrons de 0,025 eV). A maioria das reações (n,alfa) de nêutrons térmicos são reações 10B(n,alfa)7Li acompanhadas por emissão gama de 0,48 MeV.

Oxigênio

O oxigênio é um gás reativo incolor e inodoro, o elemento químico de número atômico 8 e o componente de sustentação da vida do ar. É um membro do grupo calcogênio na tabela periódica, um não metal altamente reativo e um agente oxidante que forma óxidos com a maioria dos elementos, bem como com outros compostos. Em massa, o oxigênio é o terceiro elemento mais abundante no universo, depois do hidrogênio e do hélio.

Boro na Tabela Periódica

Oxigênio na Tabela Periódica

Fonte: www.luciteria.com

Boro e Oxigênio – Aplicações

Boro

Quase todo o minério de boro extraído da Terra é destinado ao refinamento em ácido bórico e tetraborato de sódio pentahidratado. Nos Estados Unidos, 70% do boro é utilizado para a produção de vidro e cerâmica. O principal uso em escala industrial global de compostos de boro (cerca de 46% do uso final) é na produção de fibra de vidro para fibras de vidro isolantes e estruturais contendo boro, especialmente na Ásia. O boro é adicionado aos aços de boro no nível de algumas partes por milhão para aumentar a temperabilidade. Porcentagens mais altas são adicionadas aos aços usados ​​na indústria nuclear devido à capacidade de absorção de nêutrons do boro (por exemplo, pellets de carboneto de boro). O boro também pode aumentar a dureza superficial de aços e ligas por meio de boretação. Pós de carboneto de boro e nitreto de boro cúbico são amplamente utilizados como abrasivos.

Oxigênio

Os usos comuns de oxigênio incluem a produção de aço, plásticos e têxteis, brasagem, soldagem e corte de aços e outros metais, propulsores de foguetes, oxigenoterapia e sistemas de suporte à vida em aeronaves, submarinos, voos espaciais e mergulho. A fundição de minério de ferro em aço consome 55% do oxigênio produzido comercialmente. Nesse processo, o oxigênio é injetado através de uma lança de alta pressão no ferro fundido, que remove as impurezas de enxofre e o excesso de carbono como os respectivos óxidos, dióxido de enxofre e dióxido de carbono. A absorção de oxigênio do ar é o propósito essencial da respiração, de modo que a suplementação de oxigênio é usada na medicina. O tratamento não só aumenta os níveis de oxigênio no sangue do paciente, mas tem o efeito secundário de diminuir a resistência ao fluxo sanguíneo em muitos tipos de pulmões doentes, aliviando a carga de trabalho no coração.

Boro e Oxigênio – Comparação na Tabela

Elemento Boro Oxigênio
Densidade 2,46 g/cm3 0,00143 g/cm3
Resistência à tração N/D N/D
Força de rendimento N/D N/D
Módulo de elasticidade de Young N/D N/D
Escala de Mohs 9,5 N/D
Dureza Brinell N/D N/D
Dureza Vickers 49000 MPa N/D
Ponto de fusão 2079 °C -218,4 °C
Ponto de ebulição 3927 °C -183 °C
Condutividade térmica 27 W/mK 0,02674 W/mK
Coeficiente de Expansão Térmica 5-7 µm/mK N/D
Calor específico 1,02 J/gK 0,92 J/gK
Calor de fusão 50,2 kJ/mol (O2) 0,444 kJ/mol
Calor da vaporização 508 kJ/mol (O2) 6,82 kJ/mol