Facebook Instagram Youtube Twitter

Boro e Carbono – Comparação – Propriedades

Este artigo contém uma comparação das principais propriedades térmicas e atômicas do boro e do carbono, dois elementos químicos comparáveis ​​da tabela periódica. Ele também contém descrições básicas e aplicações de ambos os elementos. Boro vs. Carbono.

boro e carbono - comparação

Compare Boro com outro elemento

Oxygen - Properties - Price - Applications - Production

Nitrogen - Properties - Price - Applications - Production

Chlorine - Properties - Price - Applications - Production

Carbon - Properties - Price - Applications - Production

Silicon - Properties - Price - Applications - Production

Compare o Carbono com outro elemento

Hydrogen - Properties - Price - Applications - Production

Boron - Properties - Price - Applications - Production

Oxygen - Properties - Price - Applications - Production

Aluminium - Properties - Price - Applications - Production

Nitrogen - Properties - Price - Applications - Production

Iron - Properties - Price - Applications - Production

Chlorine - Properties - Price - Applications - Production

Bromine - Properties - Price - Applications - Production

Boro e Carbono – Sobre Elementos

Boro

Concentrações significativas de boro ocorrem na Terra em compostos conhecidos como minerais de borato. Existem mais de 100 minerais de borato diferentes, mas os mais comuns são: bórax, quernita, ulexita etc. O boro natural consiste principalmente em dois isótopos estáveis, 11B (80,1%) e 10B (19,9%). Na indústria nuclear, o boro é comumente usado como absorvedor de nêutrons devido à alta seção transversal de nêutrons do isótopo 10B. Sua seção de choque de reação (n,alfa) para nêutrons térmicos é de cerca de 3840 barns (para nêutrons de 0,025 eV). O isótopo 11B tem seção transversal de absorção para nêutrons térmicos de cerca de 0,005 barns (para nêutrons de 0,025 eV). A maioria das reações (n,alfa) de nêutrons térmicos são reações 10B(n,alfa)7Li acompanhadas por emissão gama de 0,48 MeV.

Carbono

É não-metálico e tetravalente – disponibilizando quatro elétrons para formar ligações químicas covalentes. O carbono é um dos poucos elementos conhecidos desde a antiguidade. O carbono é o 15º elemento mais abundante na crosta terrestre e o quarto elemento mais abundante no universo em massa depois do hidrogênio, hélio e oxigênio.

Boro na Tabela Periódica

Carbono na Tabela Periódica

Fonte: www.luciteria.com

Boro e Carbono – Aplicações

Boro

Quase todo o minério de boro extraído da Terra é destinado ao refinamento em ácido bórico e tetraborato de sódio pentahidratado. Nos Estados Unidos, 70% do boro é utilizado para a produção de vidro e cerâmica. O principal uso em escala industrial global de compostos de boro (cerca de 46% do uso final) é na produção de fibra de vidro para fibras de vidro isolantes e estruturais contendo boro, especialmente na Ásia. O boro é adicionado aos aços de boro no nível de algumas partes por milhão para aumentar a temperabilidade. Porcentagens mais altas são adicionadas aos aços usados ​​na indústria nuclear devido à capacidade de absorção de nêutrons do boro (por exemplo, pellets de carboneto de boro). O boro também pode aumentar a dureza superficial de aços e ligas por meio de boretação. Pós de carboneto de boro e nitreto de boro cúbico são amplamente utilizados como abrasivos.

Carbono

O principal uso econômico do carbono, além de alimentos e madeira, é na forma de hidrocarbonetos, principalmente o gás metano combustível fóssil e o petróleo bruto (petróleo). Grafite e diamantes são dois importantes alótropos de carbono que têm amplas aplicações. Os usos do carbono e seus compostos são extremamente variados. Pode formar ligas com ferro, sendo o mais comum o aço carbono. O carbono é um elemento não metálico, que é um importante elemento de liga em todos os materiais à base de metais ferrosos. O carbono está sempre presente em ligas metálicas, ou seja, em todos os tipos de aço inoxidável e ligas resistentes ao calor. O carbono é um austenitizador muito forte e aumenta a resistência do aço. Na verdade, é o principal elemento de endurecimento e é essencial para a formação de cementita, Fe3C, perlita, esferoidita e martensita ferro-carbono. Adicionar uma pequena quantidade de carbono não metálico ao ferro troca sua grande ductilidade pela maior resistência. O grafite é combinado com argilas para formar o ‘chumbo’ usado nos lápis usados ​​para escrever e desenhar. Também é usado como lubrificante e pigmento, como material de moldagem na fabricação de vidro, em eletrodos para baterias secas e em galvanoplastia e eletroformação, em escovas para motores elétricos e como moderador de nêutrons em reatores nucleares. O carvão vegetal tem sido usado desde os primeiros tempos para uma grande variedade de propósitos, incluindo arte e medicina, mas, de longe, seu uso mais importante tem sido como combustível metalúrgico. As fibras de carbono são usadas onde o baixo peso, alta rigidez, alta condutividade ou onde a aparência da fibra de carbono é desejada. O grafite é combinado com argilas para formar o ‘chumbo’ usado nos lápis usados ​​para escrever e desenhar. Também é usado como lubrificante e pigmento, como material de moldagem na fabricação de vidro, em eletrodos para baterias secas e em galvanoplastia e eletroformação, em escovas para motores elétricos e como moderador de nêutrons em reatores nucleares. O carvão vegetal tem sido usado desde os primeiros tempos para uma grande variedade de propósitos, incluindo arte e medicina, mas, de longe, seu uso mais importante tem sido como combustível metalúrgico. As fibras de carbono são usadas onde o baixo peso, alta rigidez, alta condutividade ou onde a aparência da fibra de carbono é desejada. O grafite é combinado com argilas para formar o ‘chumbo’ usado nos lápis usados ​​para escrever e desenhar. Também é usado como lubrificante e pigmento, como material de moldagem na fabricação de vidro, em eletrodos para baterias secas e em galvanoplastia e eletroformação, em escovas para motores elétricos e como moderador de nêutrons em reatores nucleares. O carvão vegetal tem sido usado desde os primeiros tempos para uma grande variedade de propósitos, incluindo arte e medicina, mas, de longe, seu uso mais importante tem sido como combustível metalúrgico. As fibras de carbono são usadas onde o baixo peso, alta rigidez, alta condutividade ou onde a aparência da fibra de carbono é desejada. em escovas para motores elétricos e como moderador de nêutrons em reatores nucleares. O carvão vegetal tem sido usado desde os primeiros tempos para uma grande variedade de propósitos, incluindo arte e medicina, mas, de longe, seu uso mais importante tem sido como combustível metalúrgico. As fibras de carbono são usadas onde o baixo peso, alta rigidez, alta condutividade ou onde a aparência da fibra de carbono é desejada. em escovas para motores elétricos e como moderador de nêutrons em reatores nucleares. O carvão vegetal tem sido usado desde os primeiros tempos para uma grande variedade de propósitos, incluindo arte e medicina, mas, de longe, seu uso mais importante tem sido como combustível metalúrgico. As fibras de carbono são usadas onde o baixo peso, alta rigidez, alta condutividade ou onde a aparência da fibra de carbono é desejada.

Boro e Carbono – Comparação na Tabela

Elemento Boro Carbono
Densidade 2,46 g/cm3 2,26 g/cm3
Resistência à tração N/D 15 MPa (grafite); 3500 MPa (fibra de carbono)
Força de rendimento N/D N/D
Módulo de elasticidade de Young N/D 4,1 GPa (grafite); 228 GPa (fibra de carbono)
Escala de Mohs 9,5 0,8 (grafite)
Dureza Brinell N/D N/D
Dureza Vickers 49.000 MPa N/D
Ponto de fusão 2079 °C 4099 °C
Ponto de ebulição 3927 °C 4527 °C
Condutividade térmica 27 W/mK 129 W/mK
Coeficiente de Expansão Térmica 5-7 µm/mK 0,8 µm/mK
Calor específico 1,02 J/gK 0,71 J/gK
Calor de fusão 50,2 kJ/mol N/D
Calor da vaporização 508 kJ/mol 355,8 kJ/mol