Facebook Instagram Youtube Twitter

Carbono y Aluminio – Comparación – Propiedades

Este artículo contiene una comparación de las propiedades térmicas y atómicas clave del carbono y el aluminio, dos elementos químicos comparables de la tabla periódica. También contiene descripciones básicas y aplicaciones de ambos elementos. Carbono vs Aluminio.

carbono y aluminio - comparación

Comparar carbono con otro elemento

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Boro - Propiedades - Precio - Aplicaciones - Producción

Oxígeno - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Nitrógeno - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Cloro - Propiedades - Precio - Aplicaciones - Producción

Bromo - Propiedades - Precio - Aplicaciones - Producción

Comparar el aluminio con otro elemento

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Litio - Propiedades - Precio - Aplicaciones - Producción

Berilio - Propiedades - Precio - Aplicaciones - Producción

Carbono - Propiedades - Precio - Aplicaciones - Producción

Oxígeno - Propiedades - Precio - Aplicaciones - Producción

Flúor - Propiedades - Precio - Aplicaciones - Producción

Sodio - Propiedades - Precio - Aplicaciones - Producción

Magnesio - Propiedades - Precio - Aplicaciones - Producción

Cobre - Propiedades - Precio - Aplicaciones - Producción

Mercurio - Propiedades - Precio - Aplicaciones - Producción

Potasio - Propiedades - Precio - Aplicaciones - Producción

Silicio - Propiedades - Precio - Aplicaciones - Producción

Cloro - Propiedades - Precio - Aplicaciones - Producción

Titanio - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Galio - Propiedades - Precio - Aplicaciones - Producción

Carbono y Aluminio: acerca de los elementos

Carbono

No es metálico y tetravalente, lo que hace que cuatro electrones estén disponibles para formar enlaces químicos covalentes. El carbono es uno de los pocos elementos conocidos desde la antigüedad. El carbono es el decimoquinto elemento más abundante en la corteza terrestre y el cuarto elemento más abundante en el universo en masa después del hidrógeno, el helio y el oxígeno.

Aluminio

El aluminio es un metal dúctil, blando, no magnético y de color blanco plateado del grupo del boro. En masa, el aluminio constituye aproximadamente el 8% de la corteza terrestre; es el tercer elemento más abundante después del oxígeno y el silicio y el metal más abundante en la corteza, aunque es menos común en el manto de abajo.

Carbono en la tabla periódica

Aluminio en la tabla periódica

Fuente: www.luciteria.com

Carbono y Aluminio – Aplicaciones

Carbono

El principal uso económico del carbono, además de los alimentos y la madera, es en forma de hidrocarburos, sobre todo el gas metano de combustibles fósiles y el petróleo crudo (petróleo). El grafito y los diamantes son dos importantes alótropos del carbono que tienen amplias aplicaciones. Los usos del carbono y sus compuestos son extremadamente variados. Puede formar aleaciones con hierro, de las cuales la más común es el acero al carbono. El carbono es un elemento no metálico, que es un elemento de aleación importante en todos los materiales a base de metales ferrosos. El carbono siempre está presente en las aleaciones metálicas, es decir, en todos los grados de acero inoxidable y aleaciones resistentes al calor. El carbono es un austenitizador muy fuerte y aumenta la resistencia del acero. De hecho, es el principal elemento endurecedor y es esencial para la formación de cementita, Fe3C, perlita, esferidita y martensita de hierro-carbono. Agregar una pequeña cantidad de carbono no metálico al hierro cambia su gran ductilidad por una mayor resistencia. El grafito se combina con arcillas para formar la «mina» que se utiliza en los lápices que se utilizan para escribir y dibujar. También se utiliza como lubricante y pigmento, como material de moldeo en la fabricación de vidrio, en electrodos para baterías secas y en galvanoplastia y electroformado, en escobillas para motores eléctricos y como moderador de neutrones en reactores nucleares. El carbón vegetal se ha utilizado desde los primeros tiempos para una amplia gama de fines, incluidos el arte y la medicina, pero su uso más importante ha sido, con mucho, como combustible metalúrgico. Las fibras de carbono se utilizan donde el peso, la rigidez y la conductividad elevados son bajos o donde se desea el aspecto del tejido de fibra de carbono. El grafito se combina con arcillas para formar la «mina» que se utiliza en los lápices que se utilizan para escribir y dibujar. También se utiliza como lubricante y pigmento, como material de moldeo en la fabricación de vidrio, en electrodos para baterías secas y en galvanoplastia y electroformado, en escobillas para motores eléctricos y como moderador de neutrones en reactores nucleares. El carbón vegetal se ha utilizado desde los primeros tiempos para una amplia gama de fines, incluidos el arte y la medicina, pero su uso más importante ha sido, con mucho, como combustible metalúrgico. Las fibras de carbono se utilizan donde el peso, la rigidez y la conductividad elevados son bajos o donde se desea el aspecto del tejido de fibra de carbono. El grafito se combina con arcillas para formar la «mina» que se utiliza en los lápices que se utilizan para escribir y dibujar. También se utiliza como lubricante y pigmento, como material de moldeo en la fabricación de vidrio, en electrodos para baterías secas y en galvanoplastia y electroformado, en escobillas para motores eléctricos y como moderador de neutrones en reactores nucleares. El carbón vegetal se ha utilizado desde los primeros tiempos para una amplia gama de fines, incluidos el arte y la medicina, pero su uso más importante ha sido, con mucho, como combustible metalúrgico. Las fibras de carbono se utilizan donde el peso, la rigidez y la conductividad elevados son bajos o donde se desea el aspecto del tejido de fibra de carbono. en escobillas para motores eléctricos y como moderador de neutrones en reactores nucleares. El carbón vegetal se ha utilizado desde los primeros tiempos para una amplia gama de fines, incluidos el arte y la medicina, pero su uso más importante ha sido, con mucho, como combustible metalúrgico. Las fibras de carbono se utilizan donde el peso, la rigidez y la conductividad elevados son bajos o donde se desea el aspecto del tejido de fibra de carbono. en escobillas para motores eléctricos y como moderador de neutrones en reactores nucleares. El carbón vegetal se ha utilizado desde los primeros tiempos para una amplia gama de fines, incluidos el arte y la medicina, pero su uso más importante ha sido, con mucho, como combustible metalúrgico. Las fibras de carbono se utilizan donde el peso, la rigidez y la conductividad elevados son bajos o donde se desea el aspecto del tejido de fibra de carbono.

Aluminio

El aluminio y sus aleaciones se utilizan ampliamente en aplicaciones aeroespaciales, automotrices, arquitectónicas, litográficas, de empaque, eléctricas y electrónicas. Es el principal material de construcción para la industria aeronáutica a lo largo de la mayor parte de su historia. Aproximadamente el 70% de las estructuras de las aeronaves civiles comerciales están hechas de aleaciones de aluminio, y sin el aluminio la aviación civil no sería económicamente viable. La industria automotriz ahora incluye aluminio como piezas de fundición de motores, ruedas, radiadores y, cada vez más, como partes de la carrocería. El aluminio 6111 y la aleación de aluminio 2008 se utilizan ampliamente para paneles externos de carrocería de automóviles. Los bloques de cilindros y los cárteres suelen estar hechos de aleaciones de aluminio.

Carbono y Aluminio: comparación en la tabla

Elemento Carbono Aluminio
Densidad 2,26 g / cm3 2,7 g / cm3
Resistencia a la tracción 15 MPa (grafito); 3500 MPa (fibra de carbono) 90 MPa (puro), 600 MPa (aleaciones)
Límite de elastacidad N / A 11 MPa (puro), 400 MPa (aleaciones)
Módulo de Young 4,1 GPa (grafito); 228 GPa (fibra de carbono) 70 GPa
Escala de Mohs 0,8 (grafito) 2,8
Dureza Brinell N / A 240 MPa
Dureza Vickers N / A 167 MPa
Punto de fusion 4099 ° C 660 ° C
Punto de ebullición 4527 ° C 2467 ° C
Conductividad térmica 129 W / mK 237 W / mK
Coeficiente de expansión térmica 0,8 µm / mK 23,1 µm / mK
Calor especifico 0,71 J / g K 0,9 J / g K
Calor de fusión N / A 10,79 kJ / mol
Calor de vaporización 355,8 kJ / mol 293,4 kJ / mol