Facebook Instagram Youtube Twitter

Cloro – Protones – Neutrones – Electrones – Configuración electrónica

Cloro-protones-neutrones-electrones-configuración

El cloro es un gas de color amarillo verdoso a temperatura ambiente. Es un elemento extremadamente reactivo y un agente oxidante fuerte: entre los elementos, tiene la mayor afinidad electrónica y la tercera electronegatividad más alta, solo detrás del oxígeno y el flúor.

Aunque quizás sea más conocido por su papel en el suministro de agua potable limpia, la química del cloro también ayuda a proporcionar materiales de construcción, electrónica, fibra óptica, células de energía solar de bajo consumo energético, el 93 por ciento de los productos farmacéuticos que salvan vidas, el 86 por ciento de los compuestos fitosanitarios, plásticos médicos. , y mucho más.

El cloro elemental se produce comercialmente a partir de salmuera por electrólisis, predominantemente en el proceso de cloro-álcali.

Protones y neutrones en Cloro

Número de protón - Número atómicoEl cloro  es un elemento químico con número atómico  17, lo que significa que hay 17 protones en su núcleo. Número total de protones en el núcleo se llama el  número atómico  del átomo y se le da el  símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a  1,602 x 10-19  culombios .

El número total de  neutrones  en el núcleo de un átomo se llama el  número de neutrones  del átomo y se le da el  símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica:  N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como  exceso de neutrones : D = N – Z = A – 2Z.

Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. Los números de masa de isótopos típicos de cloro  son  35; 37. 

Principales isótopos del Cloro

El cloro tiene dos isótopos estables, 35Cl y 37Cl. Estos son los únicos dos isótopos naturales que se encuentran en cantidad, el 35Cl constituye el 76% del cloro natural y el 37Cl el 24% restante. El isótopo radiactivo de vida más larga es el 36Cl, que tiene una vida media de 301.000 años. Todos los demás isótopos tienen vidas medias de menos de 1 hora, muchos menos de un segundo.

El cloro-35 está compuesto por 17 protones, 18 neutrones y 17 electrones.

El cloro 37 está compuesto por 17 protones, 20 neutrones y 17 electrones.

El cloro-36 está compuesto por 17 protones, 19 neutrones y 17 electrones. Existen trazas de 36Cl radiactivo  en el medio ambiente, en una proporción de aproximadamente 7×10−13 a 1 con isótopos estables.El 36Cl se produce en la atmósfera por espalación de  36Ar  por interacciones con protones de rayos cósmicos.

Isótopos estables

Isótopo Abundancia Número de neutrones
35Cl 76% 18
37Cl 24% 20

Isótopos inestables típicos

Isótopo Media vida Modo de decaimiento Producto
34mCl 31,99 (3) min decaimiento de positrones 34S
36Cl 3,013(15)×105 a desintegración beta 36Ar

Electrones y configuración electrónica

El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro del cloro es 17. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.

La configuración electrónica del  cloro  es  [Ne] 3s2 3p5 .

Los posibles estados de oxidación son  + 1,5,7 / -1 .

Es un elemento extremadamente reactivo y un agente oxidante fuerte: entre los elementos, tiene la mayor afinidad electrónica y la tercera electronegatividad más alta en la escala de Pauling, solo detrás del oxígeno y el flúor. Debido a su gran reactividad, todo el cloro de la corteza terrestre se encuentra en forma de compuestos de cloruro iónico, entre los que se incluye la sal de mesa. Es el segundo halógeno más abundante (después del flúor) y el vigésimo primer elemento químico más abundante en la corteza terrestre.

Compuesto común de Cloro

El compuesto de cloro más simple es el cloruro de hidrógeno, HCl, una sustancia química importante en la industria y en el laboratorio, tanto como gas como disuelto en agua como ácido clorhídrico. A menudo se produce al quemar hidrógeno gaseoso en cloro gaseoso o como subproducto de la cloración de hidrocarburos. El gas cloruro de hidrógeno y el ácido clorhídrico son importantes en la tecnología y la industria.

Acerca de los protones

protónUn protón  es una de  las partículas subatómicas  que forman la materia. En el universo, los protones son abundantes y constituyen  aproximadamente la mitad  de toda la materia visible. Tiene  una carga eléctrica positiva (+ 1e)  y una masa en reposo igual a 1,67262 × 10 −27  kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15  m, o 0,87 fm, y es un fermión de espín ½.

Los protones  existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados  nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón  no son  los bloques de construcción más pequeños de la materia.

Acerca de los neutrones

Un neutrón  es una de  las partículas subatómicas  que forman la materia. En el universo, los neutrones son abundantes y constituyen  más de la mitad  de toda la materia visible. No tiene  carga eléctrica  y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.

Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de  la fuerza nuclear , mientras que los protones se repelen entre sí a través de  la fuerza eléctrica  debido a su carga positiva. Estas dos fuerzas compiten, lo que lleva a la estabilidad de varios núcleos. Solo hay ciertas combinaciones de neutrones y protones, que forman  núcleos estables .

Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones,  se necesita una proporción cada vez mayor de neutrones a protones  para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre  una desintegración radiactiva . Los isótopos inestables se  desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de  la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.

Acerca de los electrones y la configuración de los electrones

La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la  configuración electrónica  de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.

Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las  propiedades químicas del átomo  están determinadas por el número de protones, de hecho, por el número y la  disposición de los electrones . La  configuración de estos electrones se  deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

Es el  principio de exclusión de Pauli  que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.

configuración electrónica - bloques - elementosLas dos primeras columnas en el lado izquierdo de la tabla periódica son donde los  s  están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan  bloque s . De manera similar, el  bloque p  son las seis columnas más a la derecha de la tabla periódica, el  bloque d  son las 10 columnas centrales de la tabla periódica, mientras que el  bloque f  es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.

En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al  gas noble  del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).

Estados de oxidación

Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.

La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:

«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»

y el término número de oxidación es casi sinónimo. Un elemento que no se combina con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.

Resumen

Elemento Cloro
Numero de protones 17
Número de neutrones (isótopos típicos) 35; 37
Numero de electrones 17
Configuración electronica [Ne] 3s2 3p5
Estados de oxidación + 1,5,7 / -1

Tabla periódica de cloro

Fuente: www.luciteria.com

Propiedades de otros elementos

Cloro - Comparación de protones - Neutrones y electrones

Tabla periódica en resolución 8K

Otras propiedades del Cloro