Facebook Instagram Youtube Twitter

Aluminio – Protones – Neutrones – Electrones – Configuración electrónica

Configuración de aluminio-protones-neutrones-electrones

El aluminio es un metal dúctil, blando, no magnético y de color blanco plateado del grupo del boro. En masa, el aluminio constituye aproximadamente el 8% de la corteza terrestre; es el tercer elemento más abundante después del oxígeno y el silicio y el metal más abundante en la corteza, aunque es menos común en el manto de abajo.

Aproximadamente el 70% de las estructuras de las aeronaves civiles comerciales están hechas de aleaciones de aluminio, y sin el aluminio la aviación civil no sería económicamente viable. El aluminio se extrae del mineral principal, la bauxita. Se encuentran importantes depósitos de bauxita en Australia, el Caribe, África, China y América del Sur.

Protones y neutrones en Aluminio

Número de protón - Número atómicoEl aluminio  es un elemento químico con número atómico  13, lo que significa que hay 13 protones en su núcleo. Número total de protones en el núcleo se llama el  número atómico  del átomo y se le da el  símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a  1,602 x 10-19  culombios .

El número total de  neutrones  en el núcleo de un átomo se llama el  número de neutrones  del átomo y se le da el  símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica:  N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como  exceso de neutrones : D = N – Z = A – 2Z.

Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. Los números de masa de isótopos típicos de aluminio  son  27. 

Principales isótopos del Aluminio

De los isótopos de aluminio, solo el 27Al es estable. Esto es consistente con el aluminio que tiene un número atómico impar. Solo el  27Al (isótopo estable) y el  26Al (isótopo radiactivo, t 1/2  =  7,2×105 a ) se producen de forma natural, sin embargo, el  27Al comprende casi todo el aluminio natural. Aparte del  26Al, todos los radioisótopos tienen una vida media de menos de 7 minutos, la mayoría de menos de un segundo.

El aluminio-27 está compuesto por 13 protones, 14 neutrones y 13 electrones. Es el único isótopo de aluminio primordial, es decir, el único que ha existido en la Tierra en su forma actual desde la formación del planeta. Casi todo el aluminio en la Tierra está presente como este isótopo, lo que lo convierte en un elemento mononuclídico.

El aluminio-26 está compuesto por 13 protones, 13 neutrones y 13 electrones. El aluminio-26 cosmogénico se aplicó por primera vez en estudios de la Luna y los meteoritos. Los fragmentos de meteoritos, después de la salida de sus cuerpos parentales, están expuestos a un intenso bombardeo de rayos cósmicos durante su viaje a través del espacio, provocando una producción sustancial de 26Al. Después de caer a la Tierra, el blindaje atmosférico protege los fragmentos de meteorito de una mayor producción de 26Al, y su desintegración se puede utilizar para determinar la edad terrestre del meteorito.

Isótopos estables

Isótopo Abundancia Número de neutrones
27Al 100% 14

Isótopos inestables típicos

Isótopo Media vida Modo de decaimiento Producto
26Al 7,17×105 a decaimiento de positrones 26Mg
28Al 2,245 (5) min desintegración beta 28Si

Electrones y configuración electrónica

El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro de Aluminio es 13. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.

Dado que el número de electrones y su disposición son responsables del comportamiento químico de los átomos, el  número atómico  identifica los diversos elementos químicos. La configuración de estos electrones se deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

La configuración electrónica del  aluminio  es  [Ne] 3s2 3p1 .

Los posibles estados de oxidación son  -2; -1; +1; +2; +3 .

Un átomo de aluminio tiene 13 electrones, dispuestos en una configuración electrónica de [Ne] 3s2 3p1, con tres electrones más allá de una configuración estable de gas noble. El aluminio puede entregar con relativa facilidad sus tres electrones más externos en muchas reacciones químicas (ver más abajo). La electronegatividad del aluminio es 1,61 (escala de Pauling). La gran mayoría de los compuestos, incluidos todos los minerales que contienen aluminio y todos los compuestos de aluminio comercialmente importantes, contienen aluminio en el estado de oxidación 3+. El número de coordinación de tales compuestos varía, pero generalmente Al3 + tiene seis o cuatro coordenadas. Casi todos los compuestos de aluminio (III) son incoloros.

Aleación de Aluminio más común

En general, las aleaciones de aluminio de la serie 6000  se alean con magnesio y silicio. La aleación 6061 es una de las aleaciones más utilizadas en la serie 6000. Tiene buenas propiedades mecánicas, es fácil de mecanizar, es soldable y puede endurecerse por precipitación, pero no a las altas resistencias que pueden alcanzar los 2000 y 7000. Tiene muy buena resistencia a la corrosión y muy buena soldabilidad aunque reducida resistencia en la zona de soldadura. Las propiedades mecánicas del 6061 dependen en gran medida del temple o tratamiento térmico del material. En comparación con la aleación 2024, la 6061 se trabaja más fácilmente y permanece resistente a la corrosión incluso cuando la superficie está desgastada.

Acerca de los protones

protónUn protón  es una de  las partículas subatómicas  que forman la materia. En el universo, los protones son abundantes y constituyen  aproximadamente la mitad  de toda la materia visible. Tiene  una carga eléctrica positiva (+ 1e)  y una masa en reposo igual a 1,67262 × 10 −27  kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15  m, o 0,87 fm, y es un fermión de espín ½.

Los protones  existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados  nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón  no son  los bloques de construcción más pequeños de la materia.

Acerca de los neutrones

Un neutrón  es una de  las partículas subatómicas  que forman la materia. En el universo, los neutrones son abundantes y constituyen  más de la mitad  de toda la materia visible. No tiene  carga eléctrica  y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.

Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de  la fuerza nuclear , mientras que los protones se repelen entre sí a través de  la fuerza eléctrica  debido a su carga positiva. Estas dos fuerzas compiten, lo que lleva a la estabilidad de varios núcleos. Solo hay ciertas combinaciones de neutrones y protones, que forman  núcleos estables .

Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones,  se necesita una proporción cada vez mayor de neutrones a protones  para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre  una desintegración radiactiva . Los isótopos inestables se  desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de  la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.

Acerca de los electrones y la configuración de los electrones

La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la  configuración electrónica  de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.

Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las  propiedades químicas del átomo  están determinadas por el número de protones, de hecho, por el número y la  disposición de los electrones . La  configuración de estos electrones se  deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

Es el  principio de exclusión de Pauli  que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.

configuración electrónica - bloques - elementosLas dos primeras columnas en el lado izquierdo de la tabla periódica son donde los  s  están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan  bloque s . De manera similar, el  bloque p  son las seis columnas más a la derecha de la tabla periódica, el  bloque d  son las 10 columnas centrales de la tabla periódica, mientras que el  bloque f  es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.

En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al  gas noble  del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).

Estados de oxidación

Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.

La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:

«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»

y el término número de oxidación es casi sinónimo. Un elemento que no se combina con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.

Resumen

Elemento Aluminio
Numero de protones 13
Número de neutrones (isótopos típicos) 27
Numero de electrones 13
Configuración electronica [Ne] 3s2 3p1
Estados de oxidación -2; -1; +1; +2; +3

Tabla periódica de aluminio

Fuente: www.luciteria.com

Propiedades de otros elementos

Aluminio - Comparación de protones - Neutrones y electrones

Tabla periódica en resolución 8K

Otras propiedades del Aluminio