icon : info-circle
En tant qu’élément, le phosphore existe sous deux formes principales – le phosphore blanc et le phosphore rouge – mais comme il est hautement réactif, le phosphore ne se trouve jamais sous forme d’élément libre sur Terre.
La grande majorité des composés phosphorés extraits sont consommés comme engrais. Le phosphate est nécessaire pour remplacer le phosphore que les plantes retirent du sol, et sa demande annuelle augmente presque deux fois plus vite que la croissance de la population humaine.
La principale source de phosphore à l’époque moderne est la roche phosphatée (par opposition au guano qui l’a précédée).
icon : plus-circle
Protons et neutrons dans le Phosphore
Le phosphore est un élément chimique de numéro atomique 15, ce qui signifie qu’il y a 15 protons dans son noyau. Le nombre total de protons dans le noyau est appelé le numéro atomique de l’atome et reçoit le symbole Z. La charge électrique totale du noyau est donc +Ze, où e (charge élémentaire) vaut 1 602 x 10-19 coulombs.
Le nombre total de neutrons dans le noyau d’un atome est appelé le nombre de neutrons de l’atome et reçoit le symbole N. Le nombre de neutrons plus le numéro atomique est égal au nombre de masse atomique: N+Z=A . La différence entre le nombre de neutrons et le numéro atomique est appelée excès de neutrons: D = N – Z = A – 2Z.
Pour les éléments stables, il existe généralement une variété d’isotopes stables. Les isotopes sont des nucléides qui ont le même numéro atomique et sont donc le même élément, mais diffèrent par le nombre de neutrons. Les nombres de masse des isotopes typiques du phosphore sont de 31.
Principaux isotopes du Phosphore
23 isotopes du phosphore sont connus, allant du 25P au 47P. Seul le 31P est stable et est donc présent à 100% d’abondance.
Le phosphore-31 est composé de 15 protons, 16 neutrons et 15 électrons. Le spin nucléaire demi-entier et la forte abondance de 31P font de la spectroscopie RMN du phosphore-31 un outil analytique très utile dans les études d’échantillons contenant du phosphore.
Le phosphore-32 est composé de 15 protons, 17 neutrons et 15 électrons. 32P , un émetteur bêta (1,71 MeV) avec une demi-vie de 14,3 jours, qui est utilisé en routine dans les laboratoires de sciences de la vie, principalement pour produire des sondes d’ADN et d’ARN radiomarquées.
Le phosphore-33 est composé de 15 protons, 18 neutrons et 15 électrons. 33P, un émetteur bêta (0,25 MeV) avec une demi-vie de 25,4 jours. Il est utilisé dans les laboratoires des sciences de la vie dans des applications dans lesquelles des émissions bêta à faible énergie sont avantageuses, telles que le séquençage de l’ADN.
Isotopes instables typiques
icon : réagir
Électrons et configuration électronique
Le nombre d’électrons dans un atome électriquement neutre est le même que le nombre de protons dans le noyau. Par conséquent, le nombre d’électrons dans l’atome neutre de phosphore est de 15. Chaque électron est influencé par les champs électriques produits par la charge nucléaire positive et les autres (Z – 1) électrons négatifs de l’atome.
Le nombre d’électrons et leur disposition étant responsables du comportement chimique des atomes, le numéro atomique identifie les différents éléments chimiques. La configuration de ces électrons découle des principes de la mécanique quantique. Le nombre d’électrons dans les couches d’électrons de chaque élément, en particulier la couche de valence la plus externe, est le principal facteur déterminant son comportement de liaison chimique. Dans le tableau périodique, les éléments sont classés par ordre croissant de numéro atomique Z.
La configuration électronique du phosphore est [Ne] 3s2 3p3.
Les états d’oxydation possibles sont +3,5/-3.
En tant qu’élément, le phosphore existe sous deux formes principales – le phosphore blanc et le phosphore rouge – mais comme il est hautement réactif, le phosphore ne se trouve jamais sous forme d’élément libre sur Terre. Les composés les plus répandus du phosphore sont des dérivés du phosphate, un anion tétraédrique. Le phosphate est la base conjuguée de l’acide phosphorique, qui est produit à grande échelle pour être utilisé dans les engrais.
icon : nextcloud
Composé de Phosphore le plus courant
L’acide phosphorique est un acide faible de formule chimique H3PO4. L’acide phosphorique de qualité alimentaire est utilisé pour acidifier les aliments et les boissons tels que divers colas et confitures, offrant un goût acidulé ou aigre. Les boissons gazeuses contenant de l’acide phosphorique, qui incluraient le Coca-Cola, sont parfois appelées sodas phosphatés ou phosphates.
À propos des protons
Un proton est l’une des particules subatomiques qui composent la matière. Dans l’univers, les protons sont abondants, constituant environ la moitié de toute la matière visible. Il a une charge électrique positive (+1e) et une masse au repos égale à 1,67262 × 10−27 kg (938,272 MeV/c2) — légèrement plus léger que celui du neutron mais près de 1836 fois supérieur à celui de l’électron. Le proton a un rayon carré moyen d’environ 0,87 × 10−15 m, ou 0,87 fm, et c’est un spin – ½ fermion.
Les protons existent dans les noyaux des atomes typiques, avec leurs homologues neutres, les neutrons. Les neutrons et les protons, communément appelés nucléons, sont liés ensemble dans le noyau atomique, où ils représentent 99,9 % de la masse de l’atome. Les recherches en physique des particules de haute énergie au XXe siècle ont révélé que ni le neutron ni le proton ne sont le plus petit élément constitutif de la matière.
À propos des neutrons
Un neutron est l’une des particules subatomiques qui composent la matière. Dans l’univers, les neutrons sont abondants, constituant plus de la moitié de toute la matière visible. Il n’a pas de charge électrique et une masse au repos égale à 1,67493 × 10−27 kg – légèrement supérieure à celle du proton mais près de 1839 fois supérieure à celle de l’électron. Le neutron a un rayon carré moyen d’environ 0,8 × 10−15 m, ou 0,8 fm, et c’est un fermion de spin ½.
Les noyaux atomiques sont constitués de protons et de neutrons, qui s’attirent par la force nucléaire, tandis que les protons se repoussent par la force électrique en raison de leur charge positive. Ces deux forces entrent en compétition, conduisant à diverses stabilités des noyaux. Il n’y a que certaines combinaisons de neutrons et de protons, qui forment des noyaux stables.
Les neutrons stabilisent le noyau, car ils s’attirent ainsi que les protons, ce qui permet de compenser la répulsion électrique entre les protons. En conséquence, à mesure que le nombre de protons augmente, un rapport croissant de neutrons sur protons est nécessaire pour former un noyau stable. S’il y a trop ou trop peu de neutrons pour un nombre donné de protons, le noyau résultant n’est pas stable et il subit une désintégration radioactive. Les isotopes instables se désintègrent par diverses voies de désintégration radioactive, le plus souvent la désintégration alpha, la désintégration bêta ou la capture d’électrons. De nombreux autres types de désintégration rares, tels que la fission spontanée ou l’émission de neutrons, sont connus. Il convient de noter que toutes ces voies de désintégration peuvent s’accompagner de l’émission subséquente de rayonnement gamma. Les désintégrations alpha ou bêta pures sont très rares.
À propos des électrons et de la configuration des électrons
Le tableau périodique est un affichage tabulaire des éléments chimiques organisés en fonction de leurs numéros atomiques, de leurs configurations électroniques et de leurs propriétés chimiques. La configuration électronique est la distribution des électrons d’un atome ou d’une molécule (ou d’une autre structure physique) dans des orbitales atomiques ou moléculaires. La connaissance de la configuration électronique des différents atomes est utile pour comprendre la structure du tableau périodique des éléments.
Chaque solide, liquide, gaz et plasma est composé d’atomes neutres ou ionisés. Les propriétés chimiques de l’atome sont déterminées par le nombre de protons, en fait, par le nombre et la disposition des électrons. La configuration de ces électrons découle des principes de la mécanique quantique. Le nombre d’électrons dans les couches d’électrons de chaque élément, en particulier la couche de valence la plus externe, est le principal facteur déterminant son comportement de liaison chimique. Dans le tableau périodique, les éléments sont classés par ordre croissant de numéro atomique Z.
C’est le principe d’exclusion de Pauli qui exige que les électrons d’un atome occupent différents niveaux d’énergie au lieu qu’ils se condensent tous dans l’état fondamental. L’ordre des électrons dans l’état fondamental des atomes multiélectrons commence par l’état d’énergie le plus bas (état fondamental) et se déplace progressivement de là vers le haut de l’échelle d’énergie jusqu’à ce que chacun des électrons de l’atome se soit vu attribuer un ensemble unique de nombres quantiques. Ce fait a des implications essentielles pour la construction du tableau périodique des éléments.
Les deux premières colonnes sur le côté gauche du tableau périodique sont celles où les sous-couches s sont occupées. Pour cette raison, les deux premières lignes du tableau périodique sont étiquetées le bloc s. De même, le bloc p sont les six colonnes les plus à droite du tableau périodique, le bloc d est les 10 colonnes du milieu du tableau périodique, tandis que le bloc f est la section de 14 colonnes qui est normalement représentée comme détachée du corps principal. du tableau périodique. Il pourrait faire partie du corps principal, mais alors le tableau périodique serait plutôt long et encombrant.
Pour les atomes avec de nombreux électrons, cette notation peut devenir longue et donc une notation abrégée est utilisée. La configuration électronique peut être visualisée comme les électrons de cœur, équivalents au gaz noble de la période précédente, et les électrons de valence (par exemple [Xe] 6s2 pour le baryum).
États d’oxydation
Les états d’oxydation sont généralement représentés par des nombres entiers qui peuvent être positifs, nuls ou négatifs. La plupart des éléments ont plus d’un état d’oxydation possible. Par exemple, le carbone a neuf états d’oxydation entiers possibles de -4 à +4.
La définition actuelle de l’état d’oxydation du livre d’or IUPAC est:
« L’état d’oxydation d’un atome est la charge de cet atome après approximation ionique de ses liaisons hétéronucléaires… »
et le terme nombre d’oxydation est presque synonyme. Un élément qui n’est combiné à aucun autre élément différent a un état d’oxydation de 0. L’état d’oxydation 0 se produit pour tous les éléments – c’est simplement l’élément sous sa forme élémentaire. Un atome d’un élément dans un composé aura un état d’oxydation positif s’il a eu des électrons retirés. De même, l’ajout d’électrons entraîne un état d’oxydation négatif. Nous avons également distingué les états d’oxydation possibles et communs de chaque élément. Par exemple, le silicium a neuf états d’oxydation entiers possibles de -4 à +4, mais seuls -4, 0 et +4 sont des états d’oxydation communs.
Résumé
Élément |
Phosphore |
Nombre de protons |
15 |
Nombre de neutrons (isotopes typiques) |
31 |
Nombre d’électrons |
15 |
Configuration électronique |
[Ne] 3s2 3p3 |
États d’oxydation |
+ 3,5 / -3 |
Source : www.luciteria.com
Propriétés des autres éléments
Autres propriétés du Phosphore