Facebook Instagram Youtube Twitter

Hélio – Prótons – Nêutrons – Elétrons – Configuração do Elétron

Configuração de hélio-prótons-nêutrons-elétrons

O Hélio é um gás incolor, inodoro, insípido, não tóxico, inerte, monoatômico, o primeiro do grupo dos gases nobres da tabela periódica. Seu ponto de ebulição é o mais baixo entre todos os elementos. O Hélio é usado para muitas finalidades que requerem algumas de suas propriedades únicas, como seu baixo ponto de ebulição, baixa densidade, baixa solubilidade, alta condutividade térmica ou inércia. Para uso em larga escala, o Hélio é extraído por destilação fracionada do gás natural, que pode conter até 7% de Hélio. Depois que o Hélio é separado do gás natural, ele passa por um novo refino para chegar a 99,99+% de pureza para uso comercial.

Prótons e nêutrons no Hélio

Número de prótons - Número atômicoO Hélio é um elemento químico com número atômico 2 , o que significa que existem 2 prótons em seu núcleo. O número total de prótons no núcleo é chamado de número atômico do átomo e recebe o símbolo Z. A carga elétrica total do núcleo é, portanto, +Ze, onde e (carga elementar) é igual a 1,602 x 10-19 coulombs.

O número total de nêutrons no núcleo de um átomo é chamado de número de nêutrons do átomo e recebe o símbolo N. O número de nêutrons mais o número atômico é igual ao número de massa atômica: N+Z=A. A diferença entre o número de nêutrons e o número atômico é conhecida como excesso de nêutrons: D = N – Z = A – 2Z.

Para elementos estáveis, geralmente há uma variedade de isótopos estáveis. Isótopos são nuclídeos que possuem o mesmo número atômico e, portanto, são o mesmo elemento, mas diferem no número de nêutrons. Números de massa de isótopos típicos de Hélio são 3; 4. 

Isótopos Comuns de Hélio

O Hélio-3 é um isótopo leve e estável de Hélio com dois prótons e um nêutron (o isótopo mais comum, Hélio-4, possui dois prótons e dois nêutrons em contraste). Além do prótio (Hidrogênio comum), o hélio-3 é o único isótopo estável de qualquer elemento com mais prótons do que nêutrons. O Hélio-3 foi descoberto em 1939. O Hélio-3 é um isótopo importante na instrumentação para detecção de nêutrons. Tem uma seção transversal de alta absorção para nêutrons térmicos.

O Hélio-4 é um isótopo estável do elemento Hélio. É de longe o mais abundante dos dois isótopos naturais de Hélio, perfazendo cerca de 99,99986% do Hélio na Terra. Seu núcleo é idêntico a uma partícula alfa e consiste em dois prótons e dois nêutrons. As partículas alfa são relativamente grandes e carregam uma carga positiva dupla.

Isótopos Estáveis

Isótopo Abundância número de nêutrons
3He 0,0002% 1
4He 99,9998% 2

Isótopos Instáveis ​​Típicos

Isótopo Meia-vida Modo Decaimento produtos
6He 806,7 (15) ms decaimento beta 6Li
8He 119,0 (15) ms decaimento beta 8Li

Elétrons e configuração eletrônica

O número de elétrons em um átomo eletricamente neutro é o mesmo que o número de prótons no núcleo. Portanto, o número de elétrons no átomo neutro de Hélio é 2. Cada elétron é influenciado pelos campos elétricos produzidos pela carga nuclear positiva e os outros (Z – 1) elétrons negativos no átomo.

Como o número de elétrons e seu arranjo são responsáveis ​​pelo comportamento químico dos átomos, o número atômico identifica os vários elementos químicos. A configuração desses elétrons segue os princípios da mecânica quântica. O número de elétrons nas camadas de elétrons de cada elemento, particularmente na camada de valência mais externa, é o fator primário na determinação de seu comportamento de ligação química. Na tabela periódica, os elementos são listados em ordem crescente de número atômico Z.

A configuração eletrônica do Hélio é 1s2.

Os possíveis estados de oxidação são 0.

O Hélio é pequeno e extremamente leve, e é o menos reativo de todos os elementos; não reage com nenhum outro elemento ou íon, então não há Hélio-rolamento de minerais na natureza. Experimentos de dispersão de elétrons de alta energia mostram que sua carga diminui exponencialmente a partir de um máximo em um ponto central, exatamente como a densidade de carga da própria nuvem de elétrons do hélio. Essa simetria reflete física subjacente semelhante: o par de nêutrons e o par de prótons no núcleo do hélio obedecem às mesmas regras da mecânica quântica que o par de elétrons do hélio (embora as partículas nucleares estejam sujeitas a um potencial de ligação nuclear diferente), de modo que todos esses os férmions ocupam totalmente os orbitais 1s em pares, nenhum deles possuindo momento angular orbital e cada um cancelando o spin intrínseco do outro. Esse arranjo é, portanto, energeticamente extremamente estável para todas essas partículas, e essa estabilidade é responsável por muitos fatos cruciais sobre o hélio na natureza.

Sobre os prótons

prótonUm próton é uma das partículas subatômicas que compõem a matéria. No universo, os prótons são abundantes, constituindo cerca de metade de toda a matéria visível. Tem uma carga elétrica positiva (+1e) e uma massa de repouso igual a 1,67262 × 10−27 kg (938,272 MeV/c2) — ligeiramente mais leve que a do nêutron, mas quase 1,836 vezes maior que a do elétron. O próton tem um raio quadrado médio de cerca de 0,87 × 10−15 m, ou 0,87 fm, e é um spin – ½ férmion.

Os prótons existem nos núcleos de átomos típicos, junto com suas contrapartes neutras, os nêutrons. Nêutrons e prótons, comumente chamados de núcleons, estão unidos no núcleo atômico, onde representam 99,9% da massa do átomo. A pesquisa em física de partículas de alta energia no século 20 revelou que nem o nêutron nem o próton não são o menor bloco de construção da matéria.

Sobre Neutrons

Um nêutron é uma das  partículas subatômicas  que compõem a matéria. No universo, os nêutrons são abundantes, constituindo mais da metade de toda a matéria visível. Ele não tem carga elétrica e uma massa de repouso igual a 1,67493 × 10−27 kg – ligeiramente maior que a do próton, mas quase 1,839 vezes maior que a do elétron. O nêutron tem um raio quadrado médio de cerca de 0,8 × 10−15 m, ou 0,8 fm, e é um férmion spin-½.

Os núcleos atômicos consistem em prótons e nêutrons, que se atraem através da força nuclear, enquanto os prótons se repelem através da força elétrica devido à sua carga positiva. Essas duas forças competem, levando a várias estabilidades de núcleos. Existem apenas certas combinações de nêutrons e prótons, que formam núcleos estáveis.

Os nêutrons estabilizam o núcleo, pois atraem uns aos outros e os prótons, o que ajuda a compensar a repulsão elétrica entre os prótons. Como resultado, à medida que o número de prótons aumenta, uma proporção crescente de nêutrons para prótons é necessária para formar um núcleo estável. Se houver muitos ou poucos nêutrons para um determinado número de prótons, o núcleo resultante não é estável e sofre decaimento radioativoIsótopos instáveis ​​decaem através de vários caminhos de decaimento radioativo, mais comumente decaimento alfa, decaimento beta ou captura de elétrons. Muitos outros tipos raros de decaimento, como fissão espontânea ou emissão de nêutrons, são conhecidos. Deve-se notar que todas essas vias de decaimento podem ser acompanhadas pela subsequente emissão de radiação gama. Decaimentos alfa ou beta puros são muito raros.

Sobre elétrons e configuração de elétrons

A tabela periódica é uma exibição tabular dos elementos químicos organizados com base em seus números atômicos, configurações eletrônicas e propriedades químicas. A configuração eletrônica é a distribuição de elétrons de um átomo ou molécula (ou outra estrutura física) em orbitais atômicos ou moleculares. O conhecimento da configuração eletrônica de diferentes átomos é útil para entender a estrutura da tabela periódica dos elementos.

Todo sólido, líquido, gás e plasma é composto de átomos neutros ou ionizados. As propriedades químicas do átomo são determinadas pelo número de prótons, na verdade, pelo número e disposição dos elétrons. A configuração desses elétrons segue os princípios da mecânica quântica. O número de elétrons nas camadas de elétrons de cada elemento, particularmente na camada de valência mais externa, é o fator primário na determinação de seu comportamento de ligação química. Na tabela periódica, os elementos são listados em ordem crescente de número atômico Z.

É o princípio de exclusão de Pauli que exige que os elétrons de um átomo ocupem diferentes níveis de energia, em vez de todos se condensarem no estado fundamental. A ordenação dos elétrons no estado fundamental de átomos multieletrônicos começa com o estado de energia mais baixo (estado fundamental) e se move progressivamente a partir daí na escala de energia até que cada um dos elétrons do átomo receba um conjunto único de números quânticos. Este fato tem implicações importantes para a construção da tabela periódica dos elementos.

configuração eletrônica - blocos - elementosAs duas primeiras colunas do lado esquerdo da tabela periódica são onde os  subníveis s  estão sendo ocupados. Por causa disso, as duas primeiras linhas da tabela periódica são rotuladas como o bloco s. Da mesma forma, o bloco p são as seis colunas mais à direita da tabela periódica, o bloco d são as 10 colunas intermediárias da tabela periódica, enquanto o bloco f é a seção de 14 colunas que normalmente é descrita como separada do corpo principal da tabela periódica. Poderia ser parte do corpo principal, mas então a tabela periódica seria bastante longa e complicada.

Para átomos com muitos elétrons, essa notação pode se tornar extensa e, portanto, uma notação abreviada é usada. A configuração eletrônica pode ser visualizada como os elétrons do núcleo, equivalentes ao gás nobre do período anterior, e os elétrons de valência (por exemplo, [Xe] 6s2 para o bário).

Estados de Oxidação

Os estados de oxidação são tipicamente representados por números inteiros que podem ser positivos, zero ou negativos. A maioria dos elementos tem mais de um estado de oxidação possível. Por exemplo, o carbono tem nove possíveis estados inteiros de oxidação de -4 a +4.

A definição atual do IUPAC Gold Book de estado de oxidação é:

“O estado de oxidação de um átomo é a carga desse átomo após a aproximação iônica de suas ligações heteronucleares…”

e o termo número de oxidação é quase sinônimo. Um elemento que não é combinado com nenhum outro elemento diferente tem um estado de oxidação de 0. O estado de oxidação 0 ocorre para todos os elementos – é simplesmente o elemento em sua forma elementar. Um átomo de um elemento em um composto terá um estado de oxidação positivo se tiver seus elétrons removidos. Da mesma forma, a adição de elétrons resulta em um estado de oxidação negativo. Também distinguimos entre os estados de oxidação possíveis e comuns de cada elemento. Por exemplo, o silício tem nove possíveis estados inteiros de oxidação de -4 a +4, mas apenas -4, 0 e +4 são estados de oxidação comuns.

Resumo

Elemento Hélio
Número de prótons 2
Número de nêutrons (isótopos típicos) 3; 4
Número de elétrons 2
configuração eletrônica 1s2
Estados de oxidação 0

Hélio-tabela periódica

Fonte: www.luciteria.com


Propriedades de outros elementos

Hélio - Comparação de Prótons - Nêutrons e Elétrons

Tabela Periódica em resolução 8K

Outras propriedades do Hélio