Facebook Instagram Youtube Twitter

Vanadio – Protones – Neutrones – Electrones – Configuración electrónica

Vanadio-protones-neutrones-electrones-configuración

El vanadio es un metal de transición duro, gris plateado, dúctil y maleable. El vanadio se utiliza principalmente para producir aleaciones de aceros especiales, como aceros para herramientas de alta velocidad y algunas aleaciones de aluminio. El vanadio generalmente se agrega al acero para inhibir el crecimiento de granos durante el tratamiento térmico. El vanadio se encuentra naturalmente en unos 65 minerales y en depósitos de combustibles fósiles. Se produce en China y Rusia a partir de escoria de fundición de acero.

Protones y neutrones en Vanadio

Número de protón - Número atómicoEl vanadio  es un elemento químico con número atómico  23, lo que significa que hay 23 protones en su núcleo. Número total de protones en el núcleo se llama el  número atómico  del átomo y se le da el  símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a  1,602 x 10-19  culombios .

El número total de  neutrones  en el núcleo de un átomo se llama el  número de neutrones  del átomo y se le da el  símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica:  N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como  exceso de neutrones : D = N – Z = A – 2Z.

Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. Los números de masa de isótopos típicos de vanadio  son  51. 

Isótopos principales del Vanadio

El vanadio natural está compuesto por un isótopo estable,  51V, y un isótopo radiactivo,  50V. Este último tiene una vida media de 1,5×1017  años y una abundancia natural del 0,25%.

El vanadio-50 está compuesto por 23 protones, 27 neutrones y 23 electrones.

El vanadio-51 está compuesto por 23 protones, 28 neutrones y 23 electrones. 51V tiene un espín nuclear de 7⁄2, que es útil para la espectroscopia de RMN.

Isótopos estables

Isótopo Abundancia Número de neutrones
51V 99,75% 28

Isótopos inestables típicos

Isótopo Media vida Modo de decaimiento Producto
49V 329 (3) d captura de electrones 49Ti
50V 1,5×1017 a captura de electrones 50Ti

Electrones y configuración electrónica

El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro de Vanadio es 23. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.

La configuración electrónica del  vanadio  es  [Ar] 3d3 4s2 .

Los posibles estados de oxidación son  +2,3,4,5 .

La química del vanadio es digna de mención por la accesibilidad de los cuatro estados de oxidación adyacentes 2-5. Los compuestos de vanadio (II) son agentes reductores y los compuestos de vanadio (V) son agentes oxidantes. Los compuestos de vanadio (IV) a menudo existen como derivados de vanadilo, que contienen el centro VO2 +.

Aleación más común de Vanadio

Los aceros de alta velocidad son aleaciones complejas a base de hierro de carbono, cromo, vanadio, molibdeno o tungsteno, o combinaciones de los mismos. El vanadio generalmente se agrega al acero para inhibir el crecimiento de granos durante el tratamiento térmico. Al controlar el crecimiento del grano, mejora tanto la resistencia como la tenacidad de los aceros templados y revenido. El tamaño del grano determina las propiedades del metal. Por ejemplo, un tamaño de grano más pequeño aumenta la resistencia a la tracción y tiende a aumentar la ductilidad. Se prefiere un tamaño de grano más grande para mejorar las propiedades de fluencia a alta temperatura. Se agrega vanadio para promover la resistencia a la abrasión y producir carburos duros y estables que, al ser solo parcialmente solubles, liberan poco carbono en la matriz.

Acerca de los protones

protónUn protón  es una de  las partículas subatómicas  que forman la materia. En el universo, los protones son abundantes y constituyen  aproximadamente la mitad  de toda la materia visible. Tiene  una carga eléctrica positiva (+ 1e)  y una masa en reposo igual a 1,67262 × 10 −27  kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15  m, o 0,87 fm, y es un fermión de espín ½.

Los protones  existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados  nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón  no son  los bloques de construcción más pequeños de la materia.

Acerca de los neutrones

Un neutrón  es una de  las partículas subatómicas  que forman la materia. En el universo, los neutrones son abundantes y constituyen  más de la mitad  de toda la materia visible. No tiene  carga eléctrica  y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.

Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de  la fuerza nuclear , mientras que los protones se repelen entre sí a través de  la fuerza eléctrica  debido a su carga positiva. Estas dos fuerzas compiten, lo que lleva a una estabilidad diversa de los núcleos. Solo hay ciertas combinaciones de neutrones y protones, que forman  núcleos estables .

Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones,  se necesita una proporción cada vez mayor de neutrones a protones  para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre  una desintegración radiactiva . Los isótopos inestables se  desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de  la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.

Acerca de los electrones y la configuración electrónica

La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la  configuración electrónica  de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.

Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las  propiedades químicas del átomo  están determinadas por el número de protones, de hecho, por el número y la  disposición de los electrones . La  configuración de estos electrones se  deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

Es el  principio de exclusión de Pauli  que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.

configuración electrónica - bloques - elementosLas dos primeras columnas en el lado izquierdo de la tabla periódica son donde los  s  están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan  bloque s . De manera similar, el  bloque p  son las seis columnas más a la derecha de la tabla periódica, el  bloque d  son las 10 columnas centrales de la tabla periódica, mientras que el  bloque f  es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.

En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al  gas noble  del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).

Estados de oxidación

Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.

La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:

«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»

y el término número de oxidación es casi sinónimo. Un elemento que no se combina con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.

Resumen

Elemento Vanadio
Numero de protones 23
Número de neutrones (isótopos típicos) 51
Numero de electrones 23
Configuración electronica [Ar] 3d3 4s2
Estados de oxidación +2,3,4,5

Tabla periódica de vanadio

Fuente: www.luciteria.com

Propiedades de otros elementos

Vanadio - Comparación de protones - Neutrones y electrones

Tabla periódica en resolución 8K

Otras propiedades del Vanadio

Hierro – Protones – Neutrones – Electrones – Configuración electrónica

Configuración hierro-protones-neutrones-electrones

El hierro es un metal de la primera serie de transición. Es en masa el elemento más común en la Tierra, formando gran parte del núcleo externo e interno de la Tierra.

El hierro se utiliza en numerosos sectores como la electrónica, la fabricación, la automoción y la construcción y edificación. El hierro es el más utilizado de todos los metales y representa más del 90% de la producción mundial de metales.

Las principales zonas mineras de hierro son China, Australia, Brasil, Rusia y Ucrania. La producción anual de mineral de hierro del mundo es de aproximadamente 1600 millones de toneladas.

Protones y neutrones en Hierro

Número de protón - Número atómicoEl hierro  es un elemento químico con número atómico  26, lo que significa que hay 26 protones en su núcleo. Número total de protones en el núcleo se llama el  número atómico  del átomo y se le da el  símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a  1,602 x 10-19  culombios .

El número total de  neutrones  en el núcleo de un átomo se llama el  número de neutrones  del átomo y se le da el  símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica:  N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como  exceso de neutrones : D = N – Z = A – 2Z.

Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. Los números de masa de isótopos típicos de hierro  son  56; 57; 58. 

Isótopos principales del Hierro

El hierro tiene cuatro isótopos estables: 54Fe (5,85% del hierro natural), 56Fe (91,75%), 57Fe (2,12%) y 58Fe (0,28%). También se han creado 20-30 isótopos artificiales.

El hierro 54 está compuesto por 26 protones, 28 neutrones y 26 electrones.

El hierro-56 está compuesto por 26 protones, 30 neutrones y 26 electrones.

El hierro-57 está compuesto por 26 protones, 31 neutrones y 26 electrones.

El hierro-58 está compuesto por 26 protones, 32 neutrones y 26 electrones.

El hierro-56 es el núcleo más estable. Se une de manera más eficiente y tiene la masa promedio más baja por nucleón (930,412 MeV / c 2 ). El níquel-62, el hierro-58 y el hierro-56 son los núcleos más unidos. Se necesita más energía por nucleón para separar completamente uno de estos núcleos que cualquier otro núcleo.

Isótopos estables

Isótopo Abundancia Número de neutrones
54Fe 5,85% 28
56Fe 91,75% 30
57Fe 2,12% 31
58Fe 0,28% 32

Isótopos inestables típicos

Isótopo Media vida Modo de decaimiento Producto
55Fe 2,74 (11) a captura de electrones 55Mn
60Fe 2,6×106 a desintegración beta 60Co

Electrones y configuración electrónica

El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro de Hierro es 26. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.

La configuración electrónica del  hierro  es  [Ar] 3d6 4s2 .

Los posibles estados de oxidación son  +2,3 .

Sus 26 electrones están dispuestos en la configuración [Ar] 3d 6 4s 2 , de los cuales los electrones 3d y 4s tienen una energía relativamente cercana y, por lo tanto, puede perder un número variable de electrones y no hay un punto claro en el que la ionización adicional no sea rentable. .

El hierro forma compuestos principalmente en los estados de oxidación +2 (hierro (II), «ferroso») y +3 (hierro (III), «férrico»). El hierro también se encuentra en estados de oxidación más altos, por ejemplo, el ferrato de potasio púrpura (K 2 FeO 4 ), que contiene hierro en su estado de oxidación +6.

Aleación de Hierro más común

Los aceros al carbono  son aleaciones de hierro y carbono que pueden contener concentraciones apreciables de otros elementos de aleación. Los aceros al carbono simples  son aleaciones de hierro y carbono cuyas propiedades se derivan principalmente de la presencia de carbono. Algunos elementos incidentales como el manganeso, el silicio, el azufre y el fósforo están presentes en pequeñas cantidades debido al método de fabricación de los aceros y, sin modificar las propiedades mecánicas. Agregar una pequeña cantidad de carbono no metálico al hierro cambia su  gran ductilidad  por una  mayor resistencia . Debido a su muy alta resistencia, pero aún sustancial dureza, y su capacidad de ser alterado en gran medida por  el tratamiento térmico , el acero es una de las aleaciones ferrosas más útiles y comunes en el uso moderno.

Acerca de los protones
Acerca de los protones

protónUn protón  es una de  las partículas subatómicas  que forman la materia. En el universo, los protones son abundantes y constituyen  aproximadamente la mitad  de toda la materia visible. Tiene  una carga eléctrica positiva (+ 1e)  y una masa en reposo igual a 1,67262 × 10 −27  kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15  m, o 0,87 fm, y es un fermión de espín ½.

Los protones  existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados  nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón  no son  los bloques de construcción más pequeños de la materia.

Acerca de los neutrones

Un neutrón  es una de  las partículas subatómicas  que forman la materia. En el universo, los neutrones son abundantes y constituyen  más de la mitad  de toda la materia visible. No tiene  carga eléctrica  y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.

Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de  la fuerza nuclear , mientras que los protones se repelen entre sí a través de  la fuerza eléctrica  debido a su carga positiva. Estas dos fuerzas compiten, lo que lleva a una estabilidad diversa de los núcleos. Solo hay ciertas combinaciones de neutrones y protones, que forman  núcleos estables .

Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones,  se necesita una proporción cada vez mayor de neutrones a protones  para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre  una desintegración radiactiva . Los isótopos inestables se  desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de  la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.

Acerca de los electrones y la configuración electrónica

La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la  configuración electrónica  de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.

Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las  propiedades químicas del átomo  están determinadas por el número de protones, de hecho, por el número y la  disposición de los electrones . La  configuración de estos electrones se  deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

Es el  principio de exclusión de Pauli  que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.

configuración electrónica - bloques - elementosLas dos primeras columnas en el lado izquierdo de la tabla periódica son donde los  s  están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan  bloque s . De manera similar, el  bloque p  son las seis columnas más a la derecha de la tabla periódica, el  bloque d  son las 10 columnas centrales de la tabla periódica, mientras que el  bloque f  es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.

En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al  gas noble  del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).

Estados de oxidación

Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.

La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:

«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»

y el término número de oxidación es casi sinónimo. Un elemento que no se combina con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.

Resumen

Elemento Planchar
Numero de protones 26
Número de neutrones (isótopos típicos) 56; 57; 58
Numero de electrones 26
Configuración electronica [Ar] 3d6 4s2
Estados de oxidación +2,3

Tabla periódica de hierro

Fuente: www.luciteria.com

Propiedades de otros elementos

Hierro - Comparación de protones - Neutrones y electrones

Tabla periódica en resolución 8K

Otras propiedades del Hierro

Manganeso – Protones – Neutrones – Electrones – Configuración electrónica

Configuración manganeso-protones-neutrones-electrones

El manganeso es un metal con importantes usos industriales de aleaciones, particularmente en aceros inoxidables. Casi el 90% del manganeso producido anualmente se utiliza en la producción de acero. El manganeso se puede formar en muchos compuestos útiles. Por ejemplo, óxido de manganeso, que se puede utilizar en fertilizantes y cerámica. El manganeso se produce más comúnmente por reducción del óxido con sodio, magnesio o aluminio.

Protones y neutrones en Manganeso

Número de protón - Número atómicoEl manganeso  es un elemento químico con número atómico  25, lo que significa que hay 25 protones en su núcleo. Número total de protones en el núcleo se llama el  número atómico  del átomo y se le da el  símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a  1,602 x 10-19  culombios .

El número total de  neutrones  en el núcleo de un átomo se llama el  número de neutrones  del átomo y se le da el  símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica:  N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como  exceso de neutrones : D = N – Z = A – 2Z.

Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. Los números de masa de isótopos típicos de manganeso  son  55. 

Principales isótopos del Manganeso

El manganeso de origen natural está compuesto por un isótopo estable, 55Mn. Se han aislado y descrito varios radioisótopos, cuyo peso atómico varía de 44u ( 44Mn) a 69u ( 69Mn).

El manganeso-55 está compuesto por 25 protones, 30 neutrones y 25 electrones.

Debido a su vida media relativamente corta, 53Mn ocurre solo en pequeñas cantidades debido a la acción de los rayos cósmicos sobre el hierro en las rocas. Los contenidos isotópicos de manganeso se combinan típicamente con contenidos isotópicos de cromo y han encontrado aplicación en geología isotópica y datación radiométrica.

Isótopos estables

Isótopo Abundancia Número de neutrones
55Mn 100% 30

Isótopos inestables típicos

Isótopo Media vida Modo de decaimiento Producto
53Mn 2,74 (11) a captura de electrones 53Cr
54Mn 312,03 (3) d captura de electrones 54Cr
56Mn 2.58 (1) h desintegración beta 56Fe

Electrones y configuración electrónica

El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro de Manganeso es 25. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.

La configuración electrónica del  manganeso  es  [Ar] 3d5 4s2 .

Los posibles estados de oxidación son  +2,3,4,7 .

Los estados de oxidación más comunes del manganeso son +2, +3, +4, +6 y +7, aunque se han observado todos los estados de oxidación de −3 a +7. Mn2 + a menudo compite con Mg2 + en sistemas biológicos.

El estado de oxidación más estable para el manganeso es +2, que tiene un color rosa pálido, y se conocen muchos compuestos de manganeso (II), como el sulfato de manganeso (II) (MnSO 4 ) y el cloruro de manganeso (II) (MnCl 2 ).

Compuesto más común de Manganeso

El permanganato de potasio se usa ampliamente en la industria química y los laboratorios como un fuerte agente oxidante, y también como medicamento para la dermatitis, para la limpieza de heridas y desinfección general.

Acerca de los protones

protónUn protón  es una de  las partículas subatómicas  que forman la materia. En el universo, los protones son abundantes y constituyen  aproximadamente la mitad  de toda la materia visible. Tiene  una carga eléctrica positiva (+ 1e)  y una masa en reposo igual a 1,67262 × 10 −27  kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15  m, o 0,87 fm, y es un fermión de espín ½.

Los protones  existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados  nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón  no son  los bloques de construcción más pequeños de la materia.

Acerca de los neutrones

Un neutrón  es una de  las partículas subatómicas  que forman la materia. En el universo, los neutrones son abundantes y constituyen  más de la mitad  de toda la materia visible. No tiene  carga eléctrica  y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.

Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de  la fuerza nuclear , mientras que los protones se repelen entre sí a través de  la fuerza eléctrica  debido a su carga positiva. Estas dos fuerzas compiten, lo que lleva a una estabilidad diversa de los núcleos. Solo hay ciertas combinaciones de neutrones y protones, que forman  núcleos estables .

Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones,  se necesita una proporción cada vez mayor de neutrones a protones  para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre  una desintegración radiactiva . Los isótopos inestables se  desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de  la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.

Acerca de los electrones y la configuración electrónica

La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la  configuración electrónica  de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.

Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las  propiedades químicas del átomo  están determinadas por el número de protones, de hecho, por el número y la  disposición de los electrones . La  configuración de estos electrones se  deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

Es el  principio de exclusión de Pauli  que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.

configuración electrónica - bloques - elementosLas dos primeras columnas en el lado izquierdo de la tabla periódica son donde los  s  están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan  bloque s . De manera similar, el  bloque p  son las seis columnas más a la derecha de la tabla periódica, el  bloque d  son las 10 columnas centrales de la tabla periódica, mientras que el  bloque f  es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.

En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al  gas noble  del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).

Estados de oxidación

Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.

La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:

«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»

y el término número de oxidación es casi sinónimo. Un elemento que no se combina con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.

Resumen

Elemento Manganeso
Numero de protones 25
Número de neutrones (isótopos típicos) 55
Numero de electrones 25
Configuración electronica [Ar] 3d5 4s2
Estados de oxidación +2,3,4,7

Tabla periódica de manganeso

Fuente: www.luciteria.com

Propiedades de otros elementos

Manganeso - Comparación de protones - Neutrones y electrones

Tabla periódica en resolución 8K

Otras propiedades del Manganeso

Níquel – Protones – Neutrones – Electrones – Configuración electrónica

Configuración de níquel-protones-neutrones-electrones

El níquel es un metal brillante de color blanco plateado con un ligero tinte dorado. El níquel pertenece a los metales de transición y es duro y dúctil. La producción mundial de níquel se utiliza actualmente de la siguiente manera: 68% en acero inoxidable; 10% en aleaciones no ferrosas; 9% en galvanoplastia; 7% en acero aleado; 3% en fundiciones; y 4% otros usos (incluidas baterías).

El níquel se extrae tostando a NiO y luego reduciéndolo con carbón. El proceso Mond se utiliza para fabricar níquel puro, en el que el níquel impuro reacciona con el monóxido de carbono (CO) para formar Ni (CO) 4, que luego se descompone a 200 ° C para producir 99,99% de Ni.

Protones y neutrones en Níquel

Número de protón - Número atómicoEl níquel  es un elemento químico con número atómico  28, lo que significa que hay 28 protones en su núcleo. Número total de protones en el núcleo se llama el  número atómico  del átomo y se le da el  símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a  1,602 x 10-19  culombios .

El número total de  neutrones  en el núcleo de un átomo se llama el  número de neutrones  del átomo y se le da el  símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica:  N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como  exceso de neutrones : D = N – Z = A – 2Z.

Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. Los números de masa de isótopos típicos de níquel  son  60; 61; 62; 64. 

Principales isótopos del Níquel

El níquel natural se compone de cinco isótopos estables; 58Ni , 60Ni, 61Ni, 62Ni  y 64Ni , siendo el 58Ni el más abundante (68,077% de abundancia natural).

El níquel-58 está compuesto por 28 protones, 30 neutrones y 28 electrones. El níquel-58 es el isótopo más abundante de níquel, representando el 68,077% de la abundancia natural.

El níquel-60 está compuesto por 28 protones, 32 neutrones y 28 electrones.

El níquel-61 está compuesto por 28 protones, 33 neutrones y 28 electrones. El níquel-61 es el único isótopo estable de níquel con espín nuclear (I = 3/2), lo que lo hace útil para estudios por espectroscopia EPR.

El níquel-62 está compuesto por 28 protones, 34 neutrones y 28 electrones. El níquel-62 tiene la energía de enlace nuclear media más alta por nucleón de cualquier nucleón, a 8,7946 MeV / nucleón. Su energía de enlace es mayor que el 56Fe y el 58Fe , elementos más abundantes a menudo citados incorrectamente como los que tienen los nucleidos más unidos.

El níquel-64 está compuesto por 28 protones, 36 neutrones y 28 electrones.

Isótopos estables

Isótopo Abundancia Número de neutrones
58Ni 68,08% 30
60Ni 26,02% 32
61Ni 1,14% 33
62Ni 3,64% 34
64Ni 0,926% 36

Isótopos inestables típicos

Isótopo Media vida Modo de decaimiento Producto
59Ni 7,6×104 a captura de electrones 59Co
63Ni 100 a desintegración beta 63Cu

Electrones y configuración electrónica

El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro de níquel es 28. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.

La configuración electrónica del  níquel  es  [Ar] 3d8 4s2 .

Los posibles estados de oxidación son  +2,3 .

El estado de oxidación más común del níquel es +2, pero los compuestos de Ni 0 , Ni + y Ni 3+  son bien conocidos, y se han producido y estudiado los estados de oxidación exóticos Ni 2− , Ni 1− y Ni 4+ . El níquel puro, pulverizado para maximizar el área de superficie reactiva, muestra una actividad química significativa, pero las piezas más grandes reaccionan lentamente con el aire en condiciones estándar porque se forma una capa de óxido en la superficie que evita una mayor corrosión (pasivación).

Aleación más importante de Níquel

Las superaleaciones a base de níquel constituyen actualmente más del 50% del peso de los motores de aviones avanzados. Las superaleaciones a base de níquel incluyen aleaciones reforzadas con solución sólida y aleaciones endurecibles por envejecimiento. Las aleaciones endurecibles por envejecimiento consisten en una matriz austenítica (fcc) dispersada con precipitación coherente de un Ni 3(Al, Ti) intermetálico con estructura fcc. Las superaleaciones a base de Ni son aleaciones con níquel como elemento de aleación primario que se prefieren como material de cuchilla en las aplicaciones discutidas anteriormente, en lugar de las superaleaciones a base de Co o Fe. Lo que es significativo para las superaleaciones a base de Ni es su alta resistencia, resistencia a la fluencia y a la corrosión a altas temperaturas. Es común fundir álabes de turbina en forma solidificada direccionalmente o en forma monocristalina. Las palas monocristalinas se utilizan principalmente en la primera fila de la etapa de turbina.

Acerca de los protones

protónUn protón  es una de  las partículas subatómicas  que forman la materia. En el universo, los protones son abundantes y constituyen  aproximadamente la mitad  de toda la materia visible. Tiene  una carga eléctrica positiva (+ 1e)  y una masa en reposo igual a 1,67262 × 10 −27  kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15  m, o 0,87 fm, y es un fermión de espín ½.

Los protones  existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados  nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón  no son  los bloques de construcción más pequeños de la materia.

Acerca de los neutrones

Un neutrón  es una de  las partículas subatómicas  que forman la materia. En el universo, los neutrones son abundantes y constituyen  más de la mitad  de toda la materia visible. No tiene  carga eléctrica  y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.

Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de  la fuerza nuclear , mientras que los protones se repelen entre sí a través de  la fuerza eléctrica  debido a su carga positiva. Estas dos fuerzas compiten, lo que lleva a una estabilidad diversa de los núcleos. Solo hay ciertas combinaciones de neutrones y protones, que forman  núcleos estables .

Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones,  se necesita una proporción cada vez mayor de neutrones a protones  para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre  una desintegración radiactiva . Los isótopos inestables se  desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de  la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.

Acerca de los electrones y la configuración electrónica

La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la  configuración electrónica  de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.

Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las  propiedades químicas del átomo  están determinadas por el número de protones, de hecho, por el número y la  disposición de los electrones . La  configuración de estos electrones se  deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

Es el  principio de exclusión de Pauli  que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.

configuración electrónica - bloques - elementosLas dos primeras columnas en el lado izquierdo de la tabla periódica son donde los  s  están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan  bloque s . De manera similar, el  bloque p  son las seis columnas más a la derecha de la tabla periódica, el  bloque d  son las 10 columnas centrales de la tabla periódica, mientras que el  bloque f  es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.

En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al  gas noble  del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).

Estados de oxidación

Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.

La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:

«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»

y el término número de oxidación es casi sinónimo. Un elemento que no se combina con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.

Resumen

Elemento Níquel
Numero de protones 28
Número de neutrones (isótopos típicos) 60; 61; 62; 64
Numero de electrones 28
Configuración electronica [Ar] 3d8 4s2
Estados de oxidación +2,3

Tabla periódica de níquel

Fuente: www.luciteria.com

Propiedades de otros elementos

Níquel - Comparación de protones - Neutrones y electrones

Tabla periódica en resolución 8K

Otras propiedades del Níquel

Cobalto – Protones – Neutrones – Electrones – Configuración electrónica

Cobalto-protones-neutrones-electrones-configuración

El cobalto es un metal gris plateado, duro y brillante. El cobalto se utiliza principalmente en baterías de iones de litio y en la fabricación de aleaciones magnéticas, resistentes al desgaste y de alta resistencia. En 2016 se utilizaron 116.000 toneladas de cobalto. Los principales minerales de cobalto son cobaltita, eritrita, glaucodot y skutterudita, pero la mayor parte del cobalto se obtiene reduciendo los subproductos de cobalto de la extracción y fundición de níquel y cobre.

Protones y neutrones en Cobalto

Número de protón - Número atómicoEl cobalto  es un elemento químico con número atómico  27, lo que significa que hay 27 protones en su núcleo. Número total de protones en el núcleo se llama el  número atómico  del átomo y se le da el  símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a  1,602 x 10-19  culombios .

El número total de  neutrones  en el núcleo de un átomo se llama el  número de neutrones  del átomo y se le da el  símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica:  N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como  exceso de neutrones : D = N – Z = A – 2Z.

Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. El número de masas de isótopos típicos de cobalto  es  59. 

Isótopos principales del Cobalto

59Co es el único isótopo estable de cobalto y el único isótopo que existe naturalmente en la Tierra. Se han caracterizado veintidós radioisótopos: el más estable, el  60Co, tiene una vida media de 5,27 años;

El cobalto-59 está compuesto por 27 protones, 32 neutrones y 27 electrones.

El cobalto-60 está compuesto por 27 protones, 33 neutrones y 27 electrones. El cobalto-60 (60Co o Co-60) es un metal radiactivo que se utiliza en radioterapia. Produce dos rayos gamma con energías de 1,17 MeV y 1,33 MeV. Es útil como fuente de rayos gamma porque se puede producir en cantidades predecibles y por su alta actividad radiactiva simplemente exponiendo cobalto natural a neutrones en un reactor durante un tiempo determinado.

Isótopos estables

Isótopo Abundancia Número de neutrones
59Co 100% 33

Isótopos inestables típicos

Isótopo Media vida Modo de decaimiento Producto
57Co 271,79 d captura de electrones 57Fe
60Co 5,27 a desintegración beta 60Ni

Electrones y configuración electrónica

El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro de cobalto es 27. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.

La configuración electrónica del  cobalto  es  [Ar] 3d7 4s2 .

Los posibles estados de oxidación son  +2,3 .

Los estados de oxidación comunes del cobalto incluyen +2 y +3, aunque también se conocen compuestos con estados de oxidación que van de -3 a +5. Un estado de oxidación común para compuestos simples es +2 (cobalto (II)).

Aleación más importante de Cobalto

Superaleaciones a base de cobalto . Esta clase de aleaciones es relativamente nueva. En 2006, Sato et al. descubrió una nueva fase en el sistema Co – Al – W. A diferencia de otras superaleaciones, las aleaciones a base de cobalto se caracterizan por una matriz austenítica reforzada con solución sólida (fcc) en la que se distribuye una pequeña cantidad de carburo. Aunque no se utilizan comercialmente en la medida de las superaleaciones a base de Ni, los elementos de aleación que se encuentran en las aleaciones a base de Co para la investigación son C, Cr, W, Ni, Ti, Al, Ir y Ta. Poseen mejor soldabilidad y resistencia a la fatiga térmica en comparación con la aleación a base de níquel. Además, tienen una excelente resistencia a la corrosión a altas temperaturas (980-1100 ° C) debido a su mayor contenido de cromo.

Acerca de los protones

protónUn protón  es una de  las partículas subatómicas  que forman la materia. En el universo, los protones son abundantes y constituyen  aproximadamente la mitad  de toda la materia visible. Tiene  una carga eléctrica positiva (+ 1e)  y una masa en reposo igual a 1,67262 × 10 −27  kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15  m, o 0,87 fm, y es un espín – ½ fermión.

Los protones  existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados  nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón  no son  los bloques de construcción más pequeños de la materia.

Acerca de los neutrones

Un neutrón  es una de  las partículas subatómicas  que forman la materia. En el universo, los neutrones son abundantes y constituyen  más de la mitad  de toda la materia visible. No tiene  carga eléctrica  y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.

Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de  la fuerza nuclear , mientras que los protones se repelen entre sí a través de  la fuerza eléctrica  debido a su carga positiva. Estas dos fuerzas compiten, lo que conduce a diversas estabilidades de los núcleos. Solo existen ciertas combinaciones de neutrones y protones, que forman  núcleos estables .

Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones,  se necesita una proporción cada vez mayor de neutrones a protones  para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre  una desintegración radiactiva . Los isótopos inestables se  desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de  la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.

Acerca de los electrones y la configuración de los electrones

La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la  configuración electrónica  de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.

Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las  propiedades químicas del átomo  están determinadas por el número de protones, de hecho, por el número y la  disposición de los electrones . La  configuración de estos electrones se  deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

Es el  principio de exclusión de Pauli el  que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.

configuración electrónica - bloques - elementosLas dos primeras columnas en el lado izquierdo de la tabla periódica son donde los  s  están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan  bloque s . De manera similar, el  bloque p  son las seis columnas más a la derecha de la tabla periódica, el  bloque d  son las 10 columnas centrales de la tabla periódica, mientras que el  bloque f  es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.

En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al  gas noble  del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).

Estados de oxidación

Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.

La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:

«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»

y el término número de oxidación es casi sinónimo. Un elemento que no está combinado con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.

Resumen

Elemento Cobalto
Numero de protones 27
Número de neutrones (isótopos típicos) 59
Numero de electrones 27
Configuración electronica [Ar] 3d7 4s2
Estados de oxidación +2,3

Tabla periódica de cobalto

Fuente: www.luciteria.com

Propiedades de otros elementos

Cobalto - Comparación de protones - Neutrones y electrones

Tabla periódica en resolución 8K

Otras propiedades del Cobalto

Zinc – Protones – Neutrones – Electrones – Configuración electrónica

Zinc-protones-neutrones-electrones-configuración

En algunos aspectos, el zinc es químicamente similar al magnesio: ambos elementos exhiben solo un estado de oxidación normal (+2), y los iones Zn2 + y Mg2 + son de tamaño similar. El galvanizado de zinc resistente a la corrosión (galvanizado en caliente) es la principal aplicación del zinc. El revestimiento de acero constituye el uso individual más importante del zinc, pero se utiliza en grandes tonelajes en fundiciones de aleación de zinc, como polvo y óxido de zinc y en productos de zinc forjado. Aproximadamente el 70% del zinc mundial proviene de la minería, mientras que el 30% restante proviene del reciclaje de zinc secundario.

Protones y neutrones en Zinc

Número de protón - Número atómicoEl zinc  es un elemento químico con número atómico  30, lo que significa que hay 30 protones en su núcleo. Número total de protones en el núcleo se llama el  número atómico  del átomo y se le da el  símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a  1,602 x 10-19  culombios .

El número total de  neutrones  en el núcleo de un átomo se llama el  número de neutrones  del átomo y se le da el  símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica:  N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como  exceso de neutrones : D = N – Z = A – 2Z.

Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. Los números de masa de isótopos típicos de zinc  son  64; 66-68; 70. 

Principales isótopos de Zinc

En la naturaleza se encuentran 5 isótopos estables de zinc, siendo el  64Zn el isótopo más abundante (49,17% de abundancia natural).

El zinc-64 está compuesto por 30 protones, 34 neutrones y 30 electrones.

El zinc-66 está compuesto por 30 protones, 36 neutrones y 30 electrones.

El zinc-67 está compuesto por 30 protones, 37 neutrones y 30 electrones.

El zinc-68 está compuesto por 30 protones, 38 neutrones y 30 electrones.

El zinc-70 está compuesto por 30 protones, 40 neutrones y 30 electrones.

Isótopos estables

Isótopo Abundancia Número de neutrones
64Zn 49,2% 34
66Zn 27,7% 36
67Zn 4% 37
68Zn 18,5% 38
70Zn 0,6% 40

Isótopos inestables típicos

Isótopo Media vida Modo de decaimiento Producto
65Zn 244 d captura de electrones 65Cu
69Zn 56 min desintegración beta 69Ga

Electrones y configuración electrónica

El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro de zinc es 30. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.

La configuración electrónica del  zinc  es  [Ar] 3d10 4s2 .

Los posibles estados de oxidación son  +2 .

El zinc tiene una configuración electrónica de [Ar] 3d 10 4s 2  y es miembro del grupo 12 de la tabla periódica. Es un metal moderadamente reactivo y un fuerte agente reductor. La superficie del metal puro se empaña rápidamente, formando finalmente una capa protectora pasivante del carbonato de zinc básico,  Zn 5 (OH) 6 (CO 3 ) 2 , por reacción con el dióxido de carbono atmosférico.

La química del zinc está dominada por el estado de oxidación +2. Cuando se forman compuestos en este estado de oxidación,  se pierden los electrones de la capa exterior  , produciendo un ión de zinc desnudo con la configuración electrónica [Ar] 3d 10 .

Aleación de Zinc más importante

Zamak  es una familia de aleaciones con un metal base de zinc y elementos de aleación de aluminio, magnesio y cobre. Las aleaciones de zinc con pequeñas cantidades de cobre, aluminio y magnesio son útiles en la fundición a presión y en la fundición por rotación, especialmente en las industrias automotriz, eléctrica y de ferretería. Las aleaciones de zinc tienen puntos de fusión bajos, requieren un aporte de calor relativamente bajo, no requieren atmósferas fundentes o protectoras. Debido a su alta fluidez, las aleaciones de zinc se pueden fundir en paredes mucho más delgadas que otras aleaciones de fundición a presión, y se pueden fundir a presión con tolerancias dimensionales más estrictas.

Acerca de los protones

protónUn protón  es una de  las partículas subatómicas  que forman la materia. En el universo, los protones son abundantes y constituyen  aproximadamente la mitad  de toda la materia visible. Tiene  una carga eléctrica positiva (+ 1e)  y una masa en reposo igual a 1,67262 × 10 −27  kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15  m, o 0,87 fm, y es un fermión de espín ½.

Los protones  existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados  nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón  no son  los bloques de construcción más pequeños de la materia.

Acerca de los neutrones

Un neutrón  es una de  las partículas subatómicas  que forman la materia. En el universo, los neutrones son abundantes y constituyen  más de la mitad  de toda la materia visible. No tiene  carga eléctrica  y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.

Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de  la fuerza nuclear , mientras que los protones se repelen entre sí a través de  la fuerza eléctrica  debido a su carga positiva. Estas dos fuerzas compiten, lo que conduce a diversas estabilidades de los núcleos. Solo existen ciertas combinaciones de neutrones y protones, que forman  núcleos estables .

Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones,  se necesita una proporción cada vez mayor de neutrones a protones  para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre  una desintegración radiactiva . Los isótopos inestables se  desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de  la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.

Acerca de los electrones y la configuración de los electrones

La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la  configuración electrónica  de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.

Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las  propiedades químicas del átomo  están determinadas por el número de protones, de hecho, por el número y la  disposición de los electrones . La  configuración de estos electrones se  deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

Es el  principio de exclusión de Pauli el  que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.

configuración electrónica - bloques - elementosLas dos primeras columnas en el lado izquierdo de la tabla periódica son donde los  s  están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan  bloque s . De manera similar, el  bloque p  son las seis columnas más a la derecha de la tabla periódica, el  bloque d  son las 10 columnas centrales de la tabla periódica, mientras que el  bloque f  es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.

En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al  gas noble  del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).

Estados de oxidación

Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.

La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:

«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»

y el término número de oxidación es casi sinónimo. Un elemento que no está combinado con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.

Resumen

Elemento Zinc
Numero de protones 30
Número de neutrones (isótopos típicos) 64; 66-68; 70
Numero de electrones 30
Configuración electronica [Ar] 3d10 4s2
Estados de oxidación +2

Tabla periódica de zinc

Fuente: www.luciteria.com

Propiedades de otros elementos

Zinc - Comparación de protones - Neutrones y electrones

Tabla periódica en resolución 8K

Otras propiedades del Zinc

Cobre – Protones – Neutrones – Electrones – Configuración electrónica

Configuración de cobre-protones-neutrones-electrones

El cobre es un metal blando, maleable y dúctil con una conductividad térmica y eléctrica muy alta. Una superficie recién expuesta de cobre puro tiene un color naranja rojizo.

Las principales aplicaciones del cobre son cables eléctricos (60%), techos y plomería (20%) y maquinaria industrial (15%). El cobre se usa principalmente como metal puro, pero cuando se requiere mayor dureza, se coloca en aleaciones como latón y bronce (5% del uso total).

La mayor parte del cobre se extrae o se extrae como sulfuros de cobre de grandes minas a cielo abierto en depósitos de pórfido de cobre que contienen de 0,4 a 1,0% de cobre.

Protones y neutrones en Cobre

Número de protón - Número atómicoEl cobre  es un elemento químico con número atómico  29, lo que significa que hay 29 protones en su núcleo. Número total de protones en el núcleo se llama el  número atómico  del átomo y se le da el  símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a  1,602 x 10-19  culombios .

El número total de  neutrones  en el núcleo de un átomo se llama el  número de neutrones  del átomo y se le da el  símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica:  N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como  exceso de neutrones : D = N – Z = A – 2Z.

Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. Los números de masa de isótopos típicos de cobre  son  63; sesenta y cinco. 

Principales isótopos del Cobre

Hay 29 isótopos de cobre. El 63Cu y el  65Cu son estables, y el  63Cu comprende aproximadamente el 69% del cobre natural; ambos tienen un giro de 3/2.

62Cu y  64Cu tienen aplicaciones importantes. 62Cu se utiliza en  62Cu-PTSM como trazador radiactivo para tomografía por emisión de positrones.

El cobre-63 está compuesto por 29 protones, 34 neutrones y 29 electrones.

El cobre-65 está compuesto por 29 protones, 36 neutrones y 29 electrones.

Isótopos estables

Isótopo Abundancia Número de neutrones
63Cu 69,15% 34
65Cu 30,85% 36

Isótopos inestables típicos

Isótopo Media vida Modo de decaimiento Producto
62Cu 9,67 (8) min decaimiento de positrones 62Ni
64Cu 12,7 (2) h  decaimiento de positrones 64Ni

Electrones y configuración electrónica

El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro de cobre es 29. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.

La configuración electrónica del  cobre  es  [Ar] 3d10 4s1 .

Los posibles estados de oxidación son  +1,2 .

El cobre forma una rica variedad de compuestos, generalmente con estados de oxidación +1 y +2, que a menudo se denominan  cuproso  y  cúprico , respectivamente. Los compuestos de cobre, ya sean complejos orgánicos u organometálicos, promueven o catalizan numerosos procesos químicos y biológicos.

Aleación de Cobre más común

El cobre electrolítico de brea tenaz , UNS C11000, es cobre puro (con un máximo de 0,0355% de impurezas) refinado mediante un proceso de refinado electrolítico y es el grado de cobre más utilizado en todo el mundo. ETP  tiene una clasificación de conductividad mínima de 100% IACS y se requiere que sea 99,9% puro. Tiene un  contenido de oxígeno del 0,02% al 0,04%  (típico). El cableado eléctrico es el mercado más importante para la industria del cobre. Esto incluye cableado de energía estructural, cable de distribución de energía, alambre para electrodomésticos, cable de comunicaciones, alambre y cable automotriz y alambre magnético.

Acerca de los protones

protónUn protón  es una de  las partículas subatómicas  que forman la materia. En el universo, los protones son abundantes y constituyen  aproximadamente la mitad  de toda la materia visible. Tiene  una carga eléctrica positiva (+ 1e)  y una masa en reposo igual a 1,67262 × 10 −27  kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15  m, o 0,87 fm, y es un fermión de espín ½.

Los protones  existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados  nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón  no son  los bloques de construcción más pequeños de la materia.

Acerca de los neutrones

Un neutrón  es una de  las partículas subatómicas  que forman la materia. En el universo, los neutrones son abundantes y constituyen  más de la mitad  de toda la materia visible. No tiene  carga eléctrica  y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.

Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de  la fuerza nuclear , mientras que los protones se repelen entre sí a través de  la fuerza eléctrica  debido a su carga positiva. Estas dos fuerzas compiten, lo que conduce a diversas estabilidades de los núcleos. Solo existen ciertas combinaciones de neutrones y protones, que forman  núcleos estables .

Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones,  se necesita una proporción cada vez mayor de neutrones a protones  para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre  una desintegración radiactiva . Los isótopos inestables se  desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de  la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.

Acerca de los electrones y la configuración de los electrones

La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la  configuración electrónica  de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.

Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las  propiedades químicas del átomo  están determinadas por el número de protones, de hecho, por el número y la  disposición de los electrones . La  configuración de estos electrones se  deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

Es el  principio de exclusión de Pauli el  que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.

configuración electrónica - bloques - elementosLas dos primeras columnas en el lado izquierdo de la tabla periódica son donde los  s  están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan  bloque s . De manera similar, el  bloque p  son las seis columnas más a la derecha de la tabla periódica, el  bloque d  son las 10 columnas centrales de la tabla periódica, mientras que el  bloque f  es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.

En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al  gas noble  del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).

Estados de oxidación

Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.

La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:

«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»

y el término número de oxidación es casi sinónimo. Un elemento que no está combinado con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.

Resumen

Elemento Cobre
Numero de protones 29
Número de neutrones (isótopos típicos) 63; sesenta y cinco
Numero de electrones 29
Configuración electronica [Ar] 3d10 4s1
Estados de oxidación +1,2

Tabla periódica de cobre

Fuente: www.luciteria.com

Propiedades de otros elementos

Cobre - Comparación de protones - Neutrones y electrones

Tabla periódica en resolución 8K

Otras propiedades del Cobre

Germanio – Protones – Neutrones – Electrones – Configuración electrónica

Germanio-protones-neutrones-electrones-configuración

El germanio es un metaloide brillante, duro, de color blanco grisáceo en el grupo del carbono, químicamente similar a su grupo vecino al estaño y al silicio.

En espectroscopía gamma, se prefiere el germanio debido a que su número atómico es mucho mayor que el del silicio y aumenta la probabilidad de interacción de los rayos gamma. Además, el germanio tiene una energía media más baja necesaria para crear un par electrón-hueco, que es de 3,6 eV para el silicio y 2,9 eV para el germanio. Esto también proporciona a este último una mejor resolución en energía.

Protones y neutrones en Germanio

Número de protón - Número atómicoEl germanio  es un elemento químico con número atómico  32, lo que significa que hay 32 protones en su núcleo. Número total de protones en el núcleo se llama el  número atómico  del átomo y se le da el  símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a  1,602 x 10-19  culombios .

El número total de  neutrones  en el núcleo de un átomo se llama el  número de neutrones  del átomo y se le da el  símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica:  N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como  exceso de neutrones : D = N – Z = A – 2Z.

Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. Los números de masa de isótopos típicos de germanio  son  70; 72; 73; 74. 

Principales isótopos de Germanio

El germanio se encuentra en 5 isótopos naturales:  70Ge,  72Ge,  73Ge,  74Ge y  76Ge. De estos,  76Ge es muy ligeramente radiactivo, decayendo por desintegración beta doble con una vida media de  1,78×1021 años . 74Ge es el isótopo más común, con una abundancia natural de aproximadamente el 36%.

El germanio-70 está compuesto por 32 protones, 38 neutrones y 32 electrones.

El germanio-72 está compuesto por 32 protones, 40 neutrones y 32 electrones.

El germanio-73 está compuesto por 32 protones, 41 neutrones y 32 electrones.

El germanio-74 está compuesto por 32 protones, 42 neutrones y 32 electrones.

El germanio-76 está compuesto por 32 protones, 44 neutrones y 32 electrones.

Isótopos que ocurren naturalmente

Isótopo Abundancia Número de neutrones
70Ge 20,52% 38
72Ge 27,45% 40
73Ge 7,76% 41
74Ge 36,52% 42
76Ge (inestable) 7,75% 44

Isótopos inestables típicos

Isótopo Media vida Modo de decaimiento Producto
68Ge 270,8 d captura de electrones 68Ga
76Ge 1,78×1021 a desintegración beta 76Se

Electrones y configuración electrónica

El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro de germanio es 32. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.

La configuración electrónica del  germanio  es  [Ar] 3d10 4s2 4p2 .

Los posibles estados de oxidación son  +2,4 .

El germanio elemental comienza a oxidarse lentamente en el aire a unos 250 ° C, formando GeO 2 . El germanio es insoluble en ácidos y álcalis diluidos, pero se disuelve lentamente en ácidos nítrico y sulfúrico concentrados calientes y reacciona violentamente con los álcalis fundidos para producir germanatos ( [GeO 3 ] 2− ). El germanio se encuentra principalmente en el estado de oxidación +4, aunque se conocen muchos compuestos +2.

Aplicación más común de Germanio

Los detectores de germanio de alta pureza  ( detectores HPGe ) son la mejor solución para una espectroscopia precisa de  rayos X y gamma . En comparación con los  detectores de silicio , el  germanio  es mucho más eficiente que el  silicio  para la detección de radiación debido a que su número atómico es mucho más alto que el silicio y debido a la menor energía promedio necesaria para crear un  par electrón-hueco , que es de 3,6 eV para el silicio y 2,9 eV. para germanio. Debido a su mayor número atómico,  Ge  tiene un coeficiente de atenuación lineal mucho mayor, lo que conduce a un camino libre medio más corto. Además, los detectores de silicio no pueden ser más gruesos que unos pocos milímetros, mientras que el germanio puede tener un espesor sensible de centímetros , y por lo tanto se puede utilizar como detector de absorción total para rayos gamma de hasta unos pocos MeV.

Acerca de los protones

protónUn protón  es una de  las partículas subatómicas  que forman la materia. En el universo, los protones son abundantes y constituyen  aproximadamente la mitad  de toda la materia visible. Tiene  una carga eléctrica positiva (+ 1e)  y una masa en reposo igual a 1,67262 × 10 −27  kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15  m, o 0,87 fm, y es un fermión de espín ½.

Los protones  existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados  nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón  no son  los bloques de construcción más pequeños de la materia.

Acerca de los neutrones

Un neutrón  es una de  las partículas subatómicas  que forman la materia. En el universo, los neutrones son abundantes y constituyen  más de la mitad  de toda la materia visible. No tiene  carga eléctrica  y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.

Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de  la fuerza nuclear , mientras que los protones se repelen entre sí a través de  la fuerza eléctrica  debido a su carga positiva. Estas dos fuerzas compiten, lo que conduce a diversas estabilidades de los núcleos. Solo existen ciertas combinaciones de neutrones y protones, que forman  núcleos estables .

Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones,  se necesita una proporción cada vez mayor de neutrones a protones  para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre  una desintegración radiactiva . Los isótopos inestables se  desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de  la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.

Acerca de los electrones y la configuración de los electrones

La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la  configuración electrónica  de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.

Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las  propiedades químicas del átomo  están determinadas por el número de protones, de hecho, por el número y la  disposición de los electrones . La  configuración de estos electrones se  deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

Es el  principio de exclusión de Pauli el  que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.

configuración electrónica - bloques - elementosLas dos primeras columnas en el lado izquierdo de la tabla periódica son donde los  s  están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan  bloque s . De manera similar, el  bloque p  son las seis columnas más a la derecha de la tabla periódica, el  bloque d  son las 10 columnas centrales de la tabla periódica, mientras que el  bloque f  es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.

En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al  gas noble  del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).

Estados de oxidación

Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.

La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:

«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»

y el término número de oxidación es casi sinónimo. Un elemento que no está combinado con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.

Resumen

Elemento Germanio
Numero de protones 32
Número de neutrones (isótopos típicos) 70; 72; 73; 74
Numero de electrones 32
Configuración electronica [Ar] 3d10 4s2 4p2
Estados de oxidación +2,4

Tabla periódica de germanio

Fuente: www.luciteria.com

Propiedades de otros elementos

Germanio - Comparación de protones - Neutrones y electrones

Tabla periódica en resolución 8K

Otras propiedades del Germanio

Galio – Protones – Neutrones – Electrones – Configuración electrónica

Configuración de galio-protones-neutrones-electrones

El galio tiene similitudes con los otros metales del grupo, aluminio, indio y talio. El galio no se encuentra como un elemento libre en la naturaleza, sino como compuestos de galio (III) en cantidades traza en minerales de zinc y en bauxita. El consumo de galio se centra en la industria de los superconductores. El galio se recupera principalmente como subproducto del tratamiento de la bauxita (la principal fuente de aluminio).

Protones y neutrones en Galio

Número de protón - Número atómicoEl galio  es un elemento químico con número atómico  31, lo que significa que hay 31 protones en su núcleo. Número total de protones en el núcleo se llama el  número atómico  del átomo y se le da el  símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a  1,602 x 10-19  culombios .

El número total de  neutrones  en el núcleo de un átomo se llama el  número de neutrones  del átomo y se le da el  símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica:  N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como  exceso de neutrones : D = N – Z = A – 2Z.

Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. Los números de masa de isótopos típicos de galio  son  69; 71. 

Isótopos principales del Galio

Solo dos isótopos son estables y se encuentran naturalmente, el 69Ga y el 71Ga. El 69Ga es más abundante: constituye aproximadamente el 60,1% del galio natural, mientras que el galio-71 constituye el 39,9% restante.

El galio-69 está compuesto por 31 protones, 38 neutrones y 31 electrones.

El galio-71 está compuesto por 31 protones, 40 neutrones y 31 electrones.

El galio-67 (vida media 3,3 días) es un isótopo emisor de rayos gamma (el gamma emitido inmediatamente después de la captura de electrones) que se utiliza en la obtención de imágenes médicas nucleares estándar, en procedimientos que generalmente se denominan exploraciones con galio.

Isótopos estables

Isótopo Abundancia Número de neutrones
69Ga 60,11% 38
71Ga 39,9% 40

Isótopos inestables típicos

Isótopo Media vida Modo de decaimiento Producto
67Ga 3,3 d decaimiento de positrones 67Zn
72Ga 14,1 h desintegración beta 72Ge

Electrones y configuración electrónica

El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro de galio es 31. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.

La configuración electrónica del  galio  es  [Ar] 3d10 4s2 4p1 .

Los posibles estados de oxidación son  +3 .

El galio se encuentra principalmente en el estado de oxidación +3. El estado de oxidación +1 también se encuentra en algunos compuestos, aunque es menos común que en los congéneres más pesados ​​del galio, el indio y el talio.

Aleación más común de Galio

Galinstan es una aleación eutéctica compuesta de galio, indio y estaño (de ahí su nombre, que se deriva del galio, indio y estannum, el nombre latino del estaño). Galistan se derrite a -19 ° C (-2 ° F) y, por lo tanto, es líquido a temperatura ambiente. Debido a la baja toxicidad y baja reactividad de los metales que lo componen, en muchas aplicaciones, galinstan ha reemplazado al mercurio líquido tóxico o al reactivo NaK (aleación de sodio-potasio). Los overclockers y entusiastas suelen utilizar metales o aleaciones como el galinstan que son líquidos a temperatura ambiente como una interfaz térmica para el enfriamiento del hardware de la computadora, donde su mayor conductividad térmica en comparación con las pastas térmicas y los epóxicos térmicos pueden permitir velocidades de reloj ligeramente más altas y potencia de procesamiento de CPU lograda en demostraciones y overclocking competitivo.

Acerca de los protones

protónUn protón  es una de  las partículas subatómicas  que forman la materia. En el universo, los protones son abundantes y constituyen  aproximadamente la mitad  de toda la materia visible. Tiene  una carga eléctrica positiva (+ 1e)  y una masa en reposo igual a 1,67262 × 10 −27  kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15  m, o 0,87 fm, y es un espín – ½ fermión.

Los protones  existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados  nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón  no son  los bloques de construcción más pequeños de la materia.

Acerca de los neutrones

Un neutrón  es una de  las partículas subatómicas  que forman la materia. En el universo, los neutrones son abundantes y constituyen  más de la mitad  de toda la materia visible. No tiene  carga eléctrica  y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.

Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de  la fuerza nuclear , mientras que los protones se repelen entre sí a través de  la fuerza eléctrica  debido a su carga positiva. Estas dos fuerzas compiten, lo que conduce a diversas estabilidades de los núcleos. Solo existen ciertas combinaciones de neutrones y protones, que forman  núcleos estables .

Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones,  se necesita una proporción cada vez mayor de neutrones a protones  para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre  una desintegración radiactiva . Los isótopos inestables se  desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de  la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.

Acerca de los electrones y la configuración de los electrones

La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la  configuración electrónica  de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.

Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las  propiedades químicas del átomo  están determinadas por el número de protones, de hecho, por el número y la  disposición de los electrones . La  configuración de estos electrones se  deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

Es el  principio de exclusión de Pauli el  que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.

configuración electrónica - bloques - elementosLas dos primeras columnas en el lado izquierdo de la tabla periódica son donde los  s  están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan  bloque s . De manera similar, el  bloque p  son las seis columnas más a la derecha de la tabla periódica, el  bloque d  son las 10 columnas centrales de la tabla periódica, mientras que el  bloque f  es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.

En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al  gas noble  del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).

Estados de oxidación

Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.

La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:

«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»

y el término número de oxidación es casi sinónimo. Un elemento que no está combinado con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.

Resumen

Elemento Galio
Numero de protones 31
Número de neutrones (isótopos típicos) 69; 71
Numero de electrones 31
Configuración electronica [Ar] 3d10 4s2 4p1
Estados de oxidación +3

Tabla periódica de galio

Fuente: www.luciteria.com

Propiedades de otros elementos

Galio - Comparación de protones - Neutrones y electrones

Tabla periódica en resolución 8K

Otras propiedades del Galio

Selenio – Protones – Neutrones – Electrones – Configuración electrónica

Configuración de selenio-protones-neutrones-electrones

El selenio es un no metal con propiedades intermedias entre los elementos de arriba y de abajo en la tabla periódica, azufre y telurio, y también tiene similitudes con el arsénico. Rara vez ocurre en su estado elemental o como compuestos minerales puros en la corteza terrestre.

Protones y neutrones en Selenio

Número de protón - Número atómicoEl selenio  es un elemento químico con número atómico  34, lo que significa que hay 34 protones en su núcleo. Número total de protones en el núcleo se llama el  número atómico  del átomo y se le da el  símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a  1,602 x 10-19  culombios .

El número total de  neutrones  en el núcleo de un átomo se llama el  número de neutrones  del átomo y se le da el  símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica:  N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como  exceso de neutrones : D = N – Z = A – 2Z.

Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. Los números de masa de isótopos típicos de selenio  son  74; 76; 77; 78; 80. 

Principales isótopos de Selenio

El selenio se encuentra en 5 isótopos naturales: 74Se, 76Se, 77Se, 78Se, 79Se, 80Se y 82Se. De estos, 79Se es un radioisótopo traza, que se descompone por desintegración beta con una vida media de 3,27×105 años . 82Se está decayendo por doble desintegración beta con una vida media de 1,08×1020 años. El 80Se es el isótopo más común, con una abundancia natural de aproximadamente 49,8%.

El selenio-74 está compuesto por 34 protones, 40 neutrones y 34 electrones.

El selenio-76 está compuesto por 34 protones, 42 neutrones y 34 electrones.

El selenio-77 está compuesto por 34 protones, 43 neutrones y 34 electrones.

El selenio-78 está compuesto por 34 protones, 44 neutrones y 34 electrones.

El selenio-79 está compuesto por 34 protones, 45 neutrones y 34 electrones.

El selenio-80 está compuesto por 34 protones, 46 neutrones y 34 electrones.

El selenio-82 está compuesto por 34 protones, 48 ​​neutrones y 34 electrones.

Isótopos que ocurren naturalmente

Isótopo Abundancia Número de neutrones
74Se 0,86% 40
76Se 9,23% 42
77Se 7,60% 43
78Se 23,69% 44
79Se rastro 45
80Se 49,80% 46
82Se (inestable) 8,82% 48

Isótopos inestables típicos

Isótopo Media vida Modo de decaimiento Producto
72Se 8,4 d captura de electrones 72As
75Se 119,8 d captura de electrones 75As
79Se 3,27×105 a desintegración beta 79Br
82Se 1,08×1020 a desintegración beta 82Kr

Electrones y configuración electrónica

El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro de selenio es 34. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.

La configuración electrónica del  selenio  es  [Ar] 3d10 4s2 4p4 .

Los posibles estados de oxidación son  + 4,6 / -2 .

Aplicación más común de Selenio

Los principales usos comerciales del selenio en la actualidad son la fabricación de vidrio y los pigmentos . El selenio encuentra aplicaciones en diversas industrias, por ejemplo, células solares y aplicaciones de fotoconductores .

Acerca de los protones

protónUn protón  es una de  las partículas subatómicas  que forman la materia. En el universo, los protones son abundantes y constituyen  aproximadamente la mitad  de toda la materia visible. Tiene  una carga eléctrica positiva (+ 1e)  y una masa en reposo igual a 1,67262 × 10 −27  kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15  m, o 0,87 fm, y es un fermión de espín ½.

Los protones  existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados  nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón  no son  los bloques de construcción más pequeños de la materia.

Acerca de los neutrones

Un neutrón  es una de  las partículas subatómicas  que forman la materia. En el universo, los neutrones son abundantes y constituyen  más de la mitad  de toda la materia visible. No tiene  carga eléctrica  y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.

Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de  la fuerza nuclear , mientras que los protones se repelen entre sí a través de  la fuerza eléctrica  debido a su carga positiva. Estas dos fuerzas compiten, lo que conduce a diversas estabilidades de los núcleos. Solo existen ciertas combinaciones de neutrones y protones, que forman  núcleos estables .

Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones,  se necesita una proporción cada vez mayor de neutrones a protones  para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre  una desintegración radiactiva . Los isótopos inestables se  desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de  la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.

Acerca de los electrones y la configuración de los electrones

La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la  configuración electrónica  de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.

Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las  propiedades químicas del átomo  están determinadas por el número de protones, de hecho, por el número y la  disposición de los electrones . La  configuración de estos electrones se  deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

Es el  principio de exclusión de Pauli el  que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.

configuración electrónica - bloques - elementosLas dos primeras columnas en el lado izquierdo de la tabla periódica son donde los  s  están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan  bloque s . De manera similar, el  bloque p  son las seis columnas más a la derecha de la tabla periódica, el  bloque d  son las 10 columnas centrales de la tabla periódica, mientras que el  bloque f  es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.

En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al  gas noble  del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).

Estados de oxidación

Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.

La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:

«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»

y el término número de oxidación es casi sinónimo. Un elemento que no está combinado con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.

Resumen

Elemento Selenio
Numero de protones 34
Número de neutrones (isótopos típicos) 74; 76; 77; 78; 80
Numero de electrones 34
Configuración electronica [Ar] 3d10 4s2 4p4
Estados de oxidación + 4,6 / -2

Tabla periódica de selenio

Fuente: www.luciteria.com

Propiedades de otros elementos

Selenio - Comparación de protones - Neutrones y electrones

Tabla periódica en resolución 8K

Otras propiedades del Selenio