Facebook Instagram Youtube Twitter

Carbono – Protones – Neutrones – Electrones – Configuración electrónica

Configuración carbono-protones-neutrones-electrones

El carbono no es metálico y tetravalente, lo que hace que cuatro electrones estén disponibles para formar enlaces químicos covalentes. El carbono es uno de los pocos elementos conocidos desde la antigüedad.

El principal uso económico del carbono, además de los alimentos y la madera, es en forma de hidrocarburos, sobre todo el gas metano de combustibles fósiles y el petróleo crudo (petróleo). El grafito y los diamantes son dos alótropos importantes del carbono que tienen amplias aplicaciones. Los usos del carbono y sus compuestos son extremadamente variados.

El grafito, el diamante y otras formas de carbono se obtienen directamente de las minas.

Protones y neutrones en Carbono

Número de protón - Número atómicoEl carbono  es un elemento químico con número atómico  6, lo que significa que hay 6 protones en su núcleo. Número total de protones en el núcleo se llama el  número atómico  del átomo y se le da el  símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a  1,602 x 10-19  culombios .

El número total de  neutrones  en el núcleo de un átomo se llama el  número de neutrones  del átomo y se le da el  símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica:  N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como  exceso de neutrones : D = N – Z = A – 2Z.

Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. Los números de masa de isótopos típicos de carbono  son  12; 13. 

Principales isótopos de Carbono

El carbono tiene 15 isótopos conocidos, de 8C a 22C, de los cuales 12C y 13C son estables. El radioisótopo de vida más larga es el 14C, con una vida media de 5,730 años.

El carbono-12 es el más abundante de los dos isótopos estables del carbono (siendo el carbono-13 el otro), que asciende al 98,93% del elemento carbono. El carbono-12 es de particular importancia en su uso como el estándar a partir del cual se miden las masas atómicas de todos los nucleidos, por lo tanto, su masa atómica es exactamente 12 daltons por definición. El carbono-12 está compuesto por 6 protones, 6 neutrones y 6 electrones.

El carbono 13  es un isótopo natural y estable de carbono con un núcleo que contiene seis protones y siete neutrones. Como uno de los isótopos ambientales, constituye aproximadamente el 1,1% de todo el carbono natural de la Tierra.

El único radionúclido cosmogénico que contribuye de manera significativa a la exposición interna de los seres humanos es el carbono 14. El carbono 14 radiactivo tiene una  vida media  de  5730 años  y sufre  desintegración β− , donde el  neutrón  se convierte en un  protón , un  electrón y un antineutrino electrónico. El carbono 14  también se puede producir en la atmósfera mediante otras reacciones de neutrones, que incluyen en particular 13C (n, γ) 14C  y 17O(n, α) 14C. Como resultado, el  carbono 14  se forma continuamente en la atmósfera superior por la interacción de los rayos cósmicos con el nitrógeno atmosférico. En promedio, solo uno de cada 1,3×1012 átomos de carbono en la atmósfera es un átomo de carbono-14 radiactivo. Como resultado, todas las sustancias biológicas vivas contienen la misma cantidad de C-14 por gramo de carbono, es decir, 0,3 Bq de actividad de carbono 14 por gramo de carbono.

Isótopos estables

Isótopo Abundancia Número de neutrones
12C 98,9% 6
13C 1,1% 7

Isótopos inestables típicos

Isótopo Media vida Modo de decaimiento Producto
11C 20 min decaimiento beta positivo 11B
14C 5730 a desintegración beta 14N

Electrones y configuración electrónica

El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro de Carbono es 6. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.

Dado que el número de electrones y su disposición son responsables del comportamiento químico de los átomos, el  número atómico  identifica los diversos elementos químicos. La configuración de estos electrones se deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

La configuración electrónica del  carbono  es  [He] 2s2 2p2 .

Los posibles estados de oxidación son  -4; -3 …; + 4 .

Se sabe que el carbono forma casi diez millones de compuestos, una gran mayoría de todos los compuestos químicos. Es un elemento tetravalente típico, que hace que cuatro electrones estén disponibles para formar enlaces químicos covalentes. El carbono se encuentra en toda la vida orgánica conocida y es la base de la química orgánica. Cuando se une con el hidrógeno, forma varios hidrocarburos que son importantes para la industria como refrigerantes, lubricantes, solventes, como materia prima química para la fabricación de plásticos y petroquímicos, y como combustibles fósiles.

Compuesto químico de Carbono más común

Las moléculas de dióxido de carbono consisten en un átomo de carbono con doble enlace covalente a dos átomos de oxígeno. El dióxido de carbono es un gas incoloro con una densidad aproximadamente un 53% más alta que la del aire seco. Es relativamente no tóxico y no combustible, pero es más pesado que el aire y puede asfixiarse por el desplazamiento del aire. Cuando el CO2 se disuelve en agua, se forma el ácido carbónico suave. El CO2 enfriado en forma sólida se llama hielo seco. El dióxido de carbono es un componente menor de la atmósfera terrestre, pero un componente importante del aire. Es una materia prima necesaria para la mayoría de las plantas, que eliminan el dióxido de carbono del aire mediante el proceso de fotosíntesis. Una concentración típica de CO2 en el aire es actualmente de aproximadamente 0,040% o 404 ppm. La concentración de dióxido de carbono atmosférico aumenta y disminuye en un patrón estacional en un rango de aproximadamente 6 ppmv. La concentración de CO2 en el aire también ha aumentado constantemente de año en año durante más de 70 años. La tasa actual de aumento es de aproximadamente 2,5 ppm por año.

Acerca de los protones

protónUn protón  es una de  las partículas subatómicas  que forman la materia. En el universo, los protones son abundantes y constituyen  aproximadamente la mitad  de toda la materia visible. Tiene  una carga eléctrica positiva (+ 1e)  y una masa en reposo igual a 1,67262 × 10 −27  kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15  m, o 0,87 fm, y es un fermión de espín ½.

Los protones  existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados  nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón  no son  los bloques de construcción más pequeños de la materia.

Acerca de los neutrones

Un neutrón  es una de  las partículas subatómicas  que forman la materia. En el universo, los neutrones son abundantes y constituyen  más de la mitad  de toda la materia visible. No tiene  carga eléctrica  y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.

Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de  la fuerza nuclear , mientras que los protones se repelen entre sí a través de  la fuerza eléctrica  debido a su carga positiva. Estas dos fuerzas compiten, lo que lleva a la estabilidad de varios núcleos. Solo hay ciertas combinaciones de neutrones y protones, que forman  núcleos estables .

Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones,  se necesita una proporción cada vez mayor de neutrones a protones  para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre  una desintegración radiactiva . Los isótopos inestables se  desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de  la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.

Acerca de los electrones y la configuración de los electrones

La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la  configuración electrónica  de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.

Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las  propiedades químicas del átomo  están determinadas por el número de protones, de hecho, por el número y la  disposición de los electrones . La  configuración de estos electrones se  deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.

Es el  principio de exclusión de Pauli  que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.

configuración electrónica - bloques - elementosLas dos primeras columnas en el lado izquierdo de la tabla periódica son donde los  s  están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan  bloque s . De manera similar, el  bloque p  son las seis columnas más a la derecha de la tabla periódica, el  bloque d  son las 10 columnas centrales de la tabla periódica, mientras que el  bloque f  es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.

En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al  gas noble  del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).

Estados de oxidación

Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.

La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:

«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»

y el término número de oxidación es casi sinónimo. Un elemento que no se combina con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.

Resumen

Elemento Carbón
Numero de protones 6
Número de neutrones (isótopos típicos) 12; 13
Numero de electrones 6
Configuración electronica [Él] 2s2 2p2
Estados de oxidación -4; -3 …; + 4

Tabla periódica de carbono

Fuente: www.luciteria.com

Propiedades de otros elementos

Carbono - Comparación de protones - Neutrones y electrones

Tabla periódica en resolución 8K

Otras propiedades del Carbono