El flúor es el halógeno más ligero y existe como un gas diatómico amarillo pálido altamente tóxico en condiciones estándar. Como elemento más electronegativo, es extremadamente reactivo: casi todos los demás elementos, incluidos algunos gases nobles, forman compuestos con flúor.
Debido al costo de refinar el flúor puro, la mayoría de las aplicaciones comerciales utilizan compuestos de flúor, y aproximadamente la mitad de la fluorita extraída se utiliza en la fabricación de acero.
El flúor se obtiene por electrólisis de una solución de hidrogendifluoruro de potasio en ácido fluorhídrico anhidro.
Protones y neutrones en Flúor
El flúor es un elemento químico con número atómico 9, lo que significa que hay 9 protones en su núcleo. Número total de protones en el núcleo se llama el número atómico del átomo y se le da el símbolo Z . La carga eléctrica total del núcleo es, por tanto, + Ze, donde e (carga elemental) es igual a 1,602 x 10-19 culombios .
El número total de neutrones en el núcleo de un átomo se llama el número de neutrones del átomo y se le da el símbolo N . Número de neutrones más el número atómico es igual al número de masa atómica: N + Z = A . La diferencia entre el número de neutrones y el número atómico se conoce como exceso de neutrones : D = N – Z = A – 2Z.
Para los elementos estables, suele haber una variedad de isótopos estables. Los isótopos son nucleidos que tienen el mismo número atómico y, por lo tanto, son el mismo elemento, pero difieren en el número de neutrones. Los números de masa de isótopos típicos de flúor son 19.
Principales isótopos de Flúor
Solo un isótopo de flúor se encuentra de forma natural en abundancia, el isótopo estable 19F. Los isótopos 17F y 18F sufren desintegración β + y captura de electrones, los isótopos más ligeros se desintegran por emisión de protones y los más pesados que 19F sufren desintegración β (los más pesados con emisión de neutrones retardada).
El flúor-19 está compuesto por 9 protones, 10 neutrones y 9 electrones. Su abundancia es del 100%; no existen otros isótopos de flúor en cantidades significativas.
El flúor-18 está compuesto por 9 protones, 9 neutrones y 9 electrones. De los nucleidos inestables de flúor, el 18F tiene la vida media más larga, 109,739 minutos. Tiene dos modos de desintegración, de los cuales el principal es la emisión de positrones. Por esta razón, el 18F es una fuente comercialmente importante de positrones.
El flúor-20 está compuesto por 9 protones, 11 neutrones y 9 electrones. El flúor-20 es uno de los isótopos del flúor más inestables. Tiene una vida media de 11,07 segundos y sufre desintegración beta.
Isótopos inestables típicos
Electrones y configuración electrónica
El número de electrones en un átomo eléctricamente neutro es el mismo que el número de protones en el núcleo. Por lo tanto, el número de electrones en el átomo neutro de flúor es 9. Cada electrón está influenciado por los campos eléctricos producidos por la carga nuclear positiva y los otros electrones negativos (Z – 1) en el átomo.
La configuración electrónica del flúor es [He] 2s2 2p5 .
Los posibles estados de oxidación son -1 .
El flúor forma una gran variedad de compuestos químicos, dentro de los cuales siempre adopta un estado de oxidación de -1. Con otros átomos, el flúor forma enlaces covalentes polares o enlaces iónicos. Con mayor frecuencia, los enlaces covalentes que involucran átomos de flúor son enlaces simples, aunque existen al menos dos ejemplos de un enlace de orden superior. La química del flúor incluye compuestos inorgánicos formados con hidrógeno, metales, no metales e incluso gases nobles; así como un conjunto diverso de compuestos orgánicos.
Compuesto químico típico de Flúor
La conversión de uranio es uno de los procesos de los ciclos del combustible nuclear, en el que el uranio se purifica químicamente y se convierte en la forma química de hexafluoruro de uranio (UF 6 ) , la reserva de entrada para la mayoría de las instalaciones comerciales de enriquecimiento de uranio. El hexafluoruro de uranio , también conocido como «hex» , es un compuesto químico utilizado en el proceso de enriquecimiento de uranio , que produce combustible para reactores nucleares . A presión atmosférica, se sublima de hexafluoruro de uranio en 56,5 ° C . En esta etapa del ciclo, el producto de conversión de hexafluoruro de uranio todavía tiene la mezcla isotópica natural, es decir, contiene solo el 0,71% del isótopo fisionable 235 U.
Acerca de los protones
Un protón es una de las partículas subatómicas que forman la materia. En el universo, los protones son abundantes y constituyen aproximadamente la mitad de toda la materia visible. Tiene una carga eléctrica positiva (+ 1e) y una masa en reposo igual a 1,67262 × 10 −27 kg ( 938,272 MeV / c 2 ), marginalmente más ligera que la del neutrón pero casi 1836 veces mayor que la del electrón. El protón tiene un radio cuadrático medio de aproximadamente 0,87 × 10 −15 m, o 0,87 fm, y es un fermión de espín ½.
Los protones existen en los núcleos de los átomos típicos, junto con sus contrapartes neutrales, los neutrones. Los neutrones y protones, comúnmente llamados nucleones , están unidos en el núcleo atómico, donde representan el 99,9 por ciento de la masa del átomo. La investigación en física de partículas de alta energía en el siglo XX reveló que ni el neutrón ni el protón no son los bloques de construcción más pequeños de la materia.
Acerca de los neutrones
Un neutrón es una de las partículas subatómicas que forman la materia. En el universo, los neutrones son abundantes y constituyen más de la mitad de toda la materia visible. No tiene carga eléctrica y una masa en reposo igual a 1,67493 × 10-27 kg, marginalmente mayor que la del protón pero casi 1839 veces mayor que la del electrón. El neutrón tiene un radio cuadrático medio de aproximadamente 0,8 × 10-15 m, o 0,8 fm, y es un fermión de espín ½.
Los núcleos atómicos están formados por protones y neutrones, que se atraen entre sí a través de la fuerza nuclear , mientras que los protones se repelen entre sí a través de la fuerza eléctrica debido a su carga positiva. Estas dos fuerzas compiten, lo que lleva a la estabilidad de varios núcleos. Solo hay ciertas combinaciones de neutrones y protones, que forman núcleos estables .
Los neutrones estabilizan el núcleo , porque se atraen entre sí y a los protones, lo que ayuda a compensar la repulsión eléctrica entre los protones. Como resultado, a medida que aumenta el número de protones, se necesita una proporción cada vez mayor de neutrones a protones para formar un núcleo estable. Si hay demasiados o muy pocos neutrones para un número determinado de protones, el núcleo resultante no es estable y sufre una desintegración radiactiva . Los isótopos inestables se desintegran a través de varias vías de desintegración radiactiva, más comúnmente desintegración alfa, desintegración beta o captura de electrones. Se conocen muchos otros tipos raros de desintegración, como la fisión espontánea o la emisión de neutrones. Cabe señalar que todas estas vías de desintegración pueden ir acompañadas de la posterior emisión de Radiación gamma . Las desintegraciones alfa o beta puras son muy raras.
Acerca de los electrones y la configuración de los electrones
La tabla periódica es una representación tabular de los elementos químicos organizados sobre la base de sus números atómicos, configuraciones electrónicas y propiedades químicas. La configuración electrónica es la distribución de electrones de un átomo o molécula (u otra estructura física) en orbitales atómicos o moleculares. El conocimiento de la configuración electrónica de diferentes átomos es útil para comprender la estructura de la tabla periódica de elementos.
Todo sólido, líquido, gas y plasma está compuesto por átomos neutros o ionizados. Las propiedades químicas del átomo están determinadas por el número de protones, de hecho, por el número y la disposición de los electrones . La configuración de estos electrones se deriva de los principios de la mecánica cuántica. El número de electrones en las capas de electrones de cada elemento, particularmente la capa de valencia más externa, es el factor principal para determinar su comportamiento de enlace químico. En la tabla periódica, los elementos se enumeran en orden de número atómico creciente Z.
Es el principio de exclusión de Pauli que requiere que los electrones de un átomo ocupen diferentes niveles de energía en lugar de que todos se condensen en el estado fundamental. El orden de los electrones en el estado fundamental de los átomos multielectrones comienza con el estado de energía más bajo (estado fundamental) y se mueve progresivamente desde allí hacia arriba en la escala de energía hasta que a cada uno de los electrones del átomo se le ha asignado un conjunto único de números cuánticos. Este hecho tiene implicaciones clave para la construcción de la tabla periódica de elementos.
Las dos primeras columnas en el lado izquierdo de la tabla periódica son donde los s están siendo ocupados subniveles. Debido a esto, las dos primeras filas de la tabla periódica se denominan bloque s . De manera similar, el bloque p son las seis columnas más a la derecha de la tabla periódica, el bloque d son las 10 columnas centrales de la tabla periódica, mientras que el bloque f es la sección de 14 columnas que normalmente se representa separada del cuerpo principal. de la tabla periódica. Podría ser parte del cuerpo principal, pero la tabla periódica sería bastante larga y engorrosa.
En el caso de átomos con muchos electrones, esta notación puede ser larga, por lo que se utiliza una notación abreviada. La configuración electrónica se puede visualizar como los electrones del núcleo, equivalentes al gas noble del período anterior, y los electrones de valencia (por ejemplo, [Xe] 6s2 para el bario).
Estados de oxidación
Los estados de oxidación se representan típicamente por números enteros que pueden ser positivos, cero o negativos. La mayoría de los elementos tienen más de un posible estado de oxidación. Por ejemplo, el carbono tiene nueve posibles estados de oxidación enteros de -4 a +4.
La definición actual del estado de oxidación del Libro de Oro de la IUPAC es:
«El estado de oxidación de un átomo es la carga de este átomo después de la aproximación iónica de sus enlaces heteronucleares …»
y el término número de oxidación es casi sinónimo. Un elemento que no se combina con ningún otro elemento diferente tiene un estado de oxidación de 0. El estado de oxidación 0 ocurre para todos los elementos – es simplemente el elemento en su forma elemental. Un átomo de un elemento en un compuesto tendrá un estado de oxidación positivo si se le han eliminado electrones. De manera similar, la adición de electrones da como resultado un estado de oxidación negativo. También hemos distinguido entre los estados de oxidación posibles y comunes de cada elemento. Por ejemplo, el silicio tiene nueve posibles estados de oxidación enteros de -4 a +4, pero solo -4, 0 y +4 son estados de oxidación comunes.
Resumen
Elemento |
Flúor |
Numero de protones |
9 |
Número de neutrones (isótopos típicos) |
19 |
Numero de electrones |
9 |
Configuración electronica |
[Él] 2s2 2p5 |
Estados de oxidación |
-1 |
Fuente: www.luciteria.com
Propiedades de otros elementos
Otras propiedades del Flúor