Sobre el Cobre
El cobre es un metal blando, maleable y dúctil con una conductividad térmica y eléctrica muy alta. Una superficie recién expuesta de cobre puro tiene un color naranja rojizo. El cobre se utiliza como conductor de calor y electricidad, como material de construcción y como componente de diversas aleaciones metálicas, como la plata esterlina utilizada en joyería, el cuproníquel utilizado para fabricar piezas y monedas marinas, y el constantano utilizado en galgas extensométricas y termopares. para medir la temperatura.
Resumen
Elemento | Cobre |
Número atómico | 29 |
Categoría de elemento | Metal de transición |
Fase en STP | Sólido |
Densidad | 8,92 g / cm3 |
Resistencia a la tracción | 210 MPa |
Límite de elastacidad | 33 MPa |
Módulo de Young | 120 GPa |
Escala de Mohs | 3 |
Dureza Brinell | 250 MPa |
Dureza Vickers | 350 MPa |
Punto de fusion | 1084,62 ° C |
Punto de ebullición | 2562 ° C |
Conductividad térmica | 401 W / mK |
Coeficiente de expansión térmica | 16,5 µm / mK |
Calor especifico | 0,38 J / g K |
Calor de fusión | 13,05 kJ / mol |
Calor de vaporización | 300,3 kJ / mol |
Resistividad eléctrica [medidor de nanoOhmios] | 16,8 |
Susceptibilidad magnética | −5,46e-6 cm ^ 3 / mol |
Aplicaciones del Cobre
Históricamente, la aleación de cobre con otro metal, por ejemplo estaño para hacer bronce, se practicó por primera vez unos 4000 años después del descubrimiento de la fundición del cobre y unos 2000 años después de que el «bronce natural» se generalizara. Una civilización antigua se define como en la Edad del Bronce, ya sea produciendo bronce fundiendo su propio cobre y aleándolo con estaño, arsénico u otros metales. Las principales aplicaciones del cobre son cables eléctricos (60%), techos y plomería (20%) y maquinaria industrial (15%). El cobre se usa principalmente como metal puro, pero cuando se requiere mayor dureza, se coloca en aleaciones como latón y bronce (5% del uso total). El cobre y las aleaciones a base de cobre, incluidos los latones (Cu-Zn) y los bronces (Cu-Sn), se utilizan ampliamente en diferentes aplicaciones industriales y sociales. Algunos de los usos comunes de las aleaciones de latón incluyen bisutería, cerraduras, bisagras, engranajes, cojinetes, carcasas de municiones, radiadores de automóviles, instrumentos musicales, envases electrónicos y monedas. El bronce, o aleaciones y mezclas similares al bronce, se utilizaron para las monedas durante un período más largo. todavía se usa ampliamente en la actualidad para resortes, cojinetes, bujes, cojinetes piloto de transmisión de automóviles y accesorios similares, y es particularmente común en los cojinetes de pequeños motores eléctricos. El latón y el bronce son materiales de ingeniería comunes en la arquitectura moderna y se utilizan principalmente para techos y revestimientos de fachadas debido a su apariencia visual. todavía se usa ampliamente en la actualidad para resortes, cojinetes, bujes, cojinetes piloto de transmisión de automóviles y accesorios similares, y es particularmente común en los cojinetes de pequeños motores eléctricos. El latón y el bronce son materiales de ingeniería comunes en la arquitectura moderna y se utilizan principalmente para techos y revestimientos de fachadas debido a su apariencia visual. todavía se usa ampliamente en la actualidad para resortes, cojinetes, bujes, cojinetes piloto de transmisión de automóviles y accesorios similares, y es particularmente común en los cojinetes de pequeños motores eléctricos. El latón y el bronce son materiales de ingeniería comunes en la arquitectura moderna y se utilizan principalmente para techos y revestimientos de fachadas debido a su apariencia visual.
Producción y precio del Cobre
Los precios de las materias primas cambian a diario. Están impulsados principalmente por la oferta, la demanda y los precios de la energía. En 2019, los precios del Cobre puro rondaron los 27 $ / kg.
La mayor parte del cobre se extrae o se extrae como sulfuros de cobre de grandes minas a cielo abierto en depósitos de pórfido de cobre que contienen de 0,4 a 1,0% de cobre. Los sitios incluyen Chuquicamata, en Chile, la mina Bingham Canyon, en Utah, Estados Unidos, y la mina El Chino, en Nuevo México, Estados Unidos. El cobre es uno de los metales más reciclados; aproximadamente un tercio de todo el cobre consumido en todo el mundo se recicla. El cobre reciclado y sus aleaciones se pueden volver a fundir y utilizar directamente o volver a procesar para obtener cobre refinado sin perder ninguna de las propiedades químicas o físicas del metal.
Fuente: www.luciteria.com
Propiedades mecánicas del Cobre
Resistencia del Cobre
En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. Al diseñar estructuras y máquinas, es importante considerar estos factores, a fin de que el material seleccionado tenga la resistencia adecuada para resistir las cargas o fuerzas aplicadas y conservar su forma original. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.
Para la tensión de tracción, la capacidad de un material o estructura para soportar cargas que tienden a alargarse se conoce como resistencia máxima a la tracción (UTS). El límite elástico o límite elástico es la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica).
Ver también: Resistencia de los materiales
Resistencia máxima a la tracción del Cobre
La resistencia máxima a la tracción del cobre es 210 MPa.
Límite de elastacidad del Cobre
El límite elástico del cobre es de 33 MPa.
Módulo de Young del Cobre
El módulo de Young del cobre es de 120 GPa.
Dureza del Cobre
En la ciencia de los materiales, la dureza es la capacidad de resistir la hendidura de la superficie ( deformación plástica localizada ) y el rayado . La prueba de dureza Brinell es una de las pruebas de dureza por indentación, que se ha desarrollado para las pruebas de dureza. En las pruebas Brinell, se fuerza un penetrador esférico duro bajo una carga específica en la superficie del metal que se va a probar.
La dureza Brinell del cobre es de aproximadamente 250 MPa.
El método de prueba de dureza Vickers fue desarrollado por Robert L. Smith y George E. Sandland en Vickers Ltd como una alternativa al método Brinell para medir la dureza de materiales. El método de prueba de dureza Vickers también se puede utilizar como método de prueba de microdureza , que se utiliza principalmente para piezas pequeñas, secciones delgadas o trabajos de profundidad de caja.
La dureza Vickers del cobre es de aproximadamente 350 MPa.
La dureza al rayado es la medida de la resistencia de una muestra a la deformación plástica permanente debido a la fricción de un objeto afilado. La escala más común para esta prueba cualitativa es la escala de Mohs , que se utiliza en mineralogía. La escala de dureza mineral de Mohs se basa en la capacidad de una muestra natural de mineral para rayar visiblemente otro mineral.
El cobre tiene una dureza de aproximadamente 3.
Ver también: dureza de materiales
Cobre – Estructura cristalina
Una posible estructura cristalina del cobre es una estructura cúbica centrada en las caras .
En los metales, y en muchos otros sólidos, los átomos están dispuestos en matrices regulares llamadas cristales. Una red de cristal es un patrón repetitivo de puntos matemáticos que se extiende por todo el espacio. Las fuerzas de los enlaces químicos provocan esta repetición. Es este patrón repetido el que controla propiedades como resistencia, ductilidad, densidad, conductividad (propiedad de conducir o transmitir calor, electricidad, etc.) y forma. Hay 14 tipos generales de patrones conocidos como celosías de Bravais.
Ver también: Estructura cristalina de materiales
Estructura cristalina de Cobre
Propiedades térmicas del Cobre
Cobre – Punto de fusión y punto de ebullición
Punto de fusión del cobre es 1084,62 ° C .
Punto de cobre de ebullición es 2562 ° C .
Tenga en cuenta que estos puntos están asociados con la presión atmosférica estándar.
Cobre – Conductividad térmica
La conductividad térmica del cobre es 401 W / (m · K).
Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada conductividad térmica , k (o λ), medida en W / mK . Es una medida de la capacidad de una sustancia para transferir calor a través de un material por conducción . Tenga en cuenta que la ley de Fourier se aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo tanto, también se define para líquidos y gases.
Coeficiente de expansión térmica del Cobre
El coeficiente de expansión térmica lineal del cobre es de 16,5 µm / (m · K)
La expansión térmica es generalmente la tendencia de la materia a cambiar sus dimensiones en respuesta a un cambio de temperatura. Por lo general, se expresa como un cambio fraccionario en longitud o volumen por cambio de temperatura unitario.
Cobre – Calor específico, calor latente de fusión, calor latente de vaporización
Calor específico del cobre es 0,38 J / g K .
La capacidad calorífica es una propiedad extensa de la materia, lo que significa que es proporcional al tamaño del sistema. La capacidad calorífica C tiene la unidad de energía por grado o energía por kelvin. Cuando se expresa el mismo fenómeno como una propiedad intensiva, la capacidad calorífica se divide por la cantidad de sustancia, masa o volumen, por lo que la cantidad es independiente del tamaño o extensión de la muestra.
El calor latente de fusión del cobre es 13,05 kJ / mol .
El calor latente de vaporización del cobre es 300,3 kJ / mol .
El calor latente es la cantidad de calor que se agrega o elimina de una sustancia para producir un cambio de fase. Esta energía descompone las fuerzas de atracción intermoleculares y también debe proporcionar la energía necesaria para expandir el gas (el trabajo pΔV ). Cuando se agrega calor latente, no se produce ningún cambio de temperatura. La entalpía de vaporización es función de la presión a la que tiene lugar esa transformación.
Cobre – Resistividad eléctrica – Susceptibilidad magnética
La propiedad eléctrica se refiere a la respuesta de un material a un campo eléctrico aplicado. Una de las principales características de los materiales es su capacidad (o falta de capacidad) para conducir corriente eléctrica. De hecho, los materiales se clasifican según esta propiedad, es decir, se dividen en conductores, semiconductores y no conductores.
Ver también: Propiedades eléctricas
La propiedad magnética se refiere a la respuesta de un material a un campo magnético aplicado . Las propiedades magnéticas macroscópicas de un material son una consecuencia de las interacciones entre un campo magnético externo y los momentos dipolares magnéticos de los átomos constituyentes . Los diferentes materiales reaccionan a la aplicación del campo magnético de manera diferente .
Ver también: Propiedades magnéticas
Resistividad eléctrica del Cobre
La resistividad eléctrica del cobre es de 16,8 nΩ⋅m .
La conductividad eléctrica y su inversa, la resistividad eléctrica , es una propiedad fundamental de un material que cuantifica cómo el cobre conduce el flujo de corriente eléctrica. La conductividad eléctrica o conductancia específica es el recíproco de la resistividad eléctrica.
Susceptibilidad magnética del Cobre
La susceptibilidad magnética del cobre es −5,46e-6 cm ^ 3 / mol .
En electromagnetismo, la susceptibilidad magnética es la medida de la magnetización de una sustancia. La susceptibilidad magnética es un factor de proporcionalidad adimensional que indica el grado de magnetización del cobre en respuesta a un campo magnético aplicado.