Technetium – Properties – Price – Applications – Production


About Technetium

Technetium is the lightest element whose isotopes are all radioactive; none are stable. Nearly all technetium is produced synthetically, and only minute amounts are found in the Earth’s crust. The chemical properties of this silvery gray, crystalline transition metal are intermediate between rhenium and manganese.


Element Technetium
Atomic number 43
Element category Transition Metal
Phase at STP Synthetic
Density 11.5 g/cm3
Ultimate Tensile Strength N/A
Yield Strength N/A
Young’s Modulus of Elasticity N/A
Mohs Scale N/A
Brinell Hardness N/A
Vickers Hardness N/A
Melting Point 2157 °C
Boiling Point 4265 °C
Thermal Conductivity 50.6 W/mK
Thermal Expansion Coefficient 7.1 µm/mK
Specific Heat 0.21 J/g K
Heat of Fusion 24 kJ/mol
Heat of Vaporization 660 kJ/mol
Electrical resistivity [nanoOhm meter] 200
Magnetic Susceptibility +270e-6 cm^3/mol

Applications of Technetium

One shortlived gamma ray-emitting nuclear isomer, technetium-99m, is used in nuclear medicine for a wide variety of tests, such as bone cancer diagnoses. The ground state of the nuclide technetium-99 is used as a gamma-ray-free source of beta particles.


Production and Price of Technetium

Raw materials prices change daily. They are primarily driven by supply, demand and energy prices. In 2019, prices of pure Technetium were at around 100000 $/kg.

The vast majority of the technetium-99m used in medical work is produced by irradiating dedicated highly enriched uranium targets in a reactor, extracting molybdenum-99 from the targets in reprocessing facilities, and recovering at the diagnostic center the technetium-99m produced upon decay of molybdenum-99.



Mechanical Properties of Technetium


Strength of Technetium

In mechanics of materials, the strength of a material is its ability to withstand an applied load without failure or plastic deformation. Strength of materials basically considers the relationship between the external loads applied to a material and the resulting deformation or change in material dimensions. In designing structures and machines, it is important to consider these factors, in order that the material selected will have adequate strength to resist applied loads or forces and retain its original shape. Strength of a material is its ability to withstand this applied load without failure or plastic deformation.

For tensile stress, the capacity of a material or structure to withstand loads tending to elongate is known as ultimate tensile strength (UTS). Yield strength or yield stress is the material property defined as the stress at which a material begins to deform plastically whereas yield point is the point where nonlinear (elastic + plastic) deformation begins.

See also: Strength of Materials

Ultimate Tensile Strength of Technetium

Ultimate tensile strength of Technetium is N/A.

Yield Strength of Technetium

Yield strength of Technetium is N/A.

Modulus of Elasticity of Technetium

The Young’s modulus of elasticity of Technetium is N/A.

Hardness of Technetium

In materials science, hardness is the ability to withstand surface indentation (localized plastic deformation) and scratchingBrinell hardness test is one of indentation hardness tests, that has been developed for hardness testing. In Brinell tests, a hard, spherical indenter is forced under a specific load into the surface of the metal to be tested.

Brinell hardness of Technetium is approximately N/A.

The Vickers hardness test method was developed by Robert L. Smith and George E. Sandland at Vickers Ltd as an alternative to the Brinell method to measure the hardness of materials. The Vickers hardness test method can be also used as a microhardness test method, which is mostly used for small parts, thin sections, or case depth work.

Vickers hardness of Technetium is approximately N/A.

Scratch hardness is the measure of how resistant a sample is to permanent plastic deformation due to friction from a sharp object. The most common scale for this qualitative test is Mohs scale, which is used in mineralogy. The Mohs scale of mineral hardness is based on the ability of one natural sample of mineral to scratch another mineral visibly.

Technetium is has a hardness of approximately N/A.

See also: Hardness of Materials

Technetium – Crystal Structure

A possible crystal structure of Technetium is hexagonal close-packed structure.

crystal structures - FCC, BCC, HCP

In metals, and in many other solids, the atoms are arranged in regular arrays called crystals. A crystal lattice is a repeating pattern of mathematical points that extends throughout space. The forces of chemical bonding causes this repetition. It is this repeated pattern which control properties like strength, ductility, density, conductivity (property of conducting or transmitting heat, electricity, etc.), and shape. There are 14 general types of such patterns known as Bravais lattices.

See also: Crystal Structure of Materials

Crystal Structure of Technetium
Crystal Structure of Technetium is: hexagonal close-packed

Strength of Elements

Elasticity of Elements

Hardness of Elements


Thermal Properties of Technetium


Technetium – Melting Point and Boiling Point

Melting point of Technetium is 2157°C.

Boiling point of Technetium is 4265°C.

Note that, these points are associated with the standard atmospheric pressure.

Technetium – Thermal Conductivity

Thermal conductivity of Technetium is 50.6 W/(m·K).

The heat transfer characteristics of a solid material are measured by a property called the thermal conductivity, k (or λ), measured in W/m.K. It is a measure of a substance’s ability to transfer heat through a material by conduction. Note that Fourier’s law applies for all matter, regardless of its state (solid, liquid, or gas), therefore, it is also defined for liquids and gases.

Coefficient of Thermal Expansion of Technetium

Linear thermal expansion coefficient of Technetium is 7.1 µm/(m·K)

Thermal expansion is generally the tendency of matter to change its dimensions in response to a change in temperature. It is usually expressed as a fractional change in length or volume per unit temperature change.

Technetium – Specific Heat, Latent Heat of Fusion, Latent Heat of Vaporization

Specific heat of Technetium is 0.21 J/g K.

Heat capacity is an extensive property of matter, meaning it is proportional to the size of the system. Heat capacity C has the unit of energy per degree or energy per kelvin. When expressing the same phenomenon as an intensive property, the heat capacity is divided by the amount of substance, mass, or volume, thus the quantity is independent of the size or extent of the sample.

Latent Heat of Fusion of Technetium is 24 kJ/mol.

Latent Heat of Vaporization of Technetium is 660 kJ/mol.

Latent heat is the amount of heat added to or removed from a substance to produce a change in phase. This energy breaks down the intermolecular attractive forces, and also must provide the energy necessary to expand the gas (the pΔV work). When latent heat is added, no temperature change occurs. The enthalpy of vaporization is a function of the pressure at which that transformation takes place.

Melting Point of Elements

Periodic Table of Elements - melting point

Thermal Conductivity of Elements

Periodic Table of Elements - thermal conductivity

Thermal Expansion of Elements

Periodic Table of Elements - thermal expansion

Heat Capacity of Elements

Periodic Table of Elements - heat capacity

Heat of Fusion of Elements

Periodic Table of Elements - latent heat fusion

Heat of Vaporization of Elements

Periodic Table of Elements - latent heat vaporization

Technetium – Electrical Resistivity – Magnetic Susceptibility


Electrical property refers to the response of a material to an applied electric field. One of the principal characteristics of materials is their ability (or lack of ability) to conduct electrical current. Indeed, materials are classified by this property, that is, they are divided into conductors, semiconductors, and nonconductors.

See also: Electrical Properties

Magnetic property refers to the response of a material to an applied magnetic field. The macroscopic magnetic properties of a material are a consequence of interactions between an external magnetic field and the magnetic dipole moments of the constituent atoms. Different materials react to the application of magnetic field differently.

See also: Magnetic Properties

Electrical Resistivity of Technetium

Electrical resistivity of Technetium is 200 nΩ⋅m.

Electrical conductivity and its converse, electrical resistivity, is a fundamental property of a material that quantifies how Technetium conducts the flow of electric current. Electrical conductivity or specific conductance is the reciprocal of electrical resistivity.

Magnetic Susceptibility of Technetium

Magnetic susceptibility of Technetium is +270e-6 cm^3/mol.

In electromagnetism, magnetic susceptibility is the measure of the magnetization of a substance. Magnetic susceptibility is a dimensionless proportionality factor that indicates the degree of magnetization of Technetium in response to an applied magnetic field.

Electrical Resistivity of Elements

Periodic Table of Elements - electrical resistivity

Magnetic Susceptibility of Elements

Application and prices of other elements

Technetium - Comparison of Properties and Prices

Periodic Table in 8K resolution

Other properties of Technetium