Facebook Instagram Youtube Twitter

Ruthenium – Properties – Price – Applications – Production


About Ruthenium

Ruthenium is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemicals.


Element Ruthenium
Atomic number 44
Element category Transition Metal
Phase at STP Solid
Density 12.37 g/cm3
Ultimate Tensile Strength 370 MPa
Yield Strength N/A
Young’s Modulus of Elasticity 447 GPa
Mohs Scale 6.5
Brinell Hardness 2160 MPa
Vickers Hardness N/A
Melting Point 2334 °C
Boiling Point 4150 °C
Thermal Conductivity 117 W/mK
Thermal Expansion Coefficient 6.4 µm/mK
Specific Heat 0.238 J/g K
Heat of Fusion 24 kJ/mol
Heat of Vaporization 595 kJ/mol
Electrical resistivity [nanoOhm meter] 71
Magnetic Susceptibility +39e-6 cm^3/mol

Applications of Ruthenium

Ruthenium finds use in electronic industry for manufacturing electrical contacts and chip resistors. Ruthenium oxide is used in the chemical industry to coat the anodes of electrochemical cells for chlorine production. Ruthenium is also used in catalysts for ammonia and acetic acid production. Ruthenium compounds can be used in solar cells, which turn light energy into electrical energy. The metal also serves as a hardener for platinum and palladium


Production and Price of Ruthenium

Raw materials prices change daily. They are primarily driven by supply, demand and energy prices. In 2019, prices of pure Ruthenium were at around 8000 $/kg.

Ruthenium is one of the rarest metals on Earth. It is found uncombined in nature; however, it is more commonly found associated with other platinum metals in the minerals pentlandite and pyroxinite. Roughly 30 tonnes of ruthenium are mined each year with world reserves estimated at 5,000 tonnes. It is obtained commercially from the wastes of nickel refining.


Source: www.luciteria.com

Mechanical Properties of Ruthenium


Strength of Ruthenium

In mechanics of materials, the strength of a material is its ability to withstand an applied load without failure or plastic deformation. Strength of materials basically considers the relationship between the external loads applied to a material and the resulting deformation or change in material dimensions. In designing structures and machines, it is important to consider these factors, in order that the material selected will have adequate strength to resist applied loads or forces and retain its original shape. Strength of a material is its ability to withstand this applied load without failure or plastic deformation.

For tensile stress, the capacity of a material or structure to withstand loads tending to elongate is known as ultimate tensile strength (UTS). Yield strength or yield stress is the material property defined as the stress at which a material begins to deform plastically whereas yield point is the point where nonlinear (elastic + plastic) deformation begins.

See also: Strength of Materials

Ultimate Tensile Strength of Ruthenium

Ultimate tensile strength of Ruthenium is 370 MPa.

Yield Strength of Ruthenium

Yield strength of Ruthenium is N/A.

Modulus of Elasticity of Ruthenium

The Young’s modulus of elasticity of Ruthenium is N/A.

Hardness of Ruthenium

In materials science, hardness is the ability to withstand surface indentation (localized plastic deformation) and scratchingBrinell hardness test is one of indentation hardness tests, that has been developed for hardness testing. In Brinell tests, a hard, spherical indenter is forced under a specific load into the surface of the metal to be tested.

Brinell hardness of Ruthenium is approximately 2160 MPa.

The Vickers hardness test method was developed by Robert L. Smith and George E. Sandland at Vickers Ltd as an alternative to the Brinell method to measure the hardness of materials. The Vickers hardness test method can be also used as a microhardness test method, which is mostly used for small parts, thin sections, or case depth work.

Vickers hardness of Ruthenium is approximately N/A.

Scratch hardness is the measure of how resistant a sample is to permanent plastic deformation due to friction from a sharp object. The most common scale for this qualitative test is Mohs scale, which is used in mineralogy. The Mohs scale of mineral hardness is based on the ability of one natural sample of mineral to scratch another mineral visibly.

Ruthenium is has a hardness of approximately 6.5.

See also: Hardness of Materials

Ruthenium – Crystal Structure

A possible crystal structure of Ruthenium is hexagonal close-packed structure.

crystal structures - FCC, BCC, HCP

In metals, and in many other solids, the atoms are arranged in regular arrays called crystals. A crystal lattice is a repeating pattern of mathematical points that extends throughout space. The forces of chemical bonding causes this repetition. It is this repeated pattern which control properties like strength, ductility, density, conductivity (property of conducting or transmitting heat, electricity, etc.), and shape. There are 14 general types of such patterns known as Bravais lattices.

See also: Crystal Structure of Materials

Crystal Structure of Ruthenium
Crystal Structure of Ruthenium is: hexagonal close-packed

Strength of Elements

Elasticity of Elements

Hardness of Elements


Thermal Properties of Ruthenium


Ruthenium – Melting Point and Boiling Point

Melting point of Ruthenium is 2334°C.

Boiling point of Ruthenium is 4150°C.

Note that, these points are associated with the standard atmospheric pressure.

Ruthenium – Thermal Conductivity

Thermal conductivity of Ruthenium is 117 W/(m·K).

The heat transfer characteristics of a solid material are measured by a property called the thermal conductivity, k (or λ), measured in W/m.K. It is a measure of a substance’s ability to transfer heat through a material by conduction. Note that Fourier’s law applies for all matter, regardless of its state (solid, liquid, or gas), therefore, it is also defined for liquids and gases.

Coefficient of Thermal Expansion of Ruthenium

Linear thermal expansion coefficient of Ruthenium is 6.4 µm/(m·K)

Thermal expansion is generally the tendency of matter to change its dimensions in response to a change in temperature. It is usually expressed as a fractional change in length or volume per unit temperature change.

Ruthenium – Specific Heat, Latent Heat of Fusion, Latent Heat of Vaporization

Specific heat of Ruthenium is 0.238 J/g K.

Heat capacity is an extensive property of matter, meaning it is proportional to the size of the system. Heat capacity C has the unit of energy per degree or energy per kelvin. When expressing the same phenomenon as an intensive property, the heat capacity is divided by the amount of substance, mass, or volume, thus the quantity is independent of the size or extent of the sample.

Latent Heat of Fusion of Ruthenium is 24 kJ/mol.

Latent Heat of Vaporization of Ruthenium is 595 kJ/mol.

Latent heat is the amount of heat added to or removed from a substance to produce a change in phase. This energy breaks down the intermolecular attractive forces, and also must provide the energy necessary to expand the gas (the pΔV work). When latent heat is added, no temperature change occurs. The enthalpy of vaporization is a function of the pressure at which that transformation takes place.

Melting Point of Elements

Periodic Table of Elements - melting point

Thermal Conductivity of Elements

Periodic Table of Elements - thermal conductivity

Thermal Expansion of Elements

Periodic Table of Elements - thermal expansion

Heat Capacity of Elements

Periodic Table of Elements - heat capacity

Heat of Fusion of Elements

Periodic Table of Elements - latent heat fusion

Heat of Vaporization of Elements

Periodic Table of Elements - latent heat vaporization

Ruthenium – Electrical Resistivity – Magnetic Susceptibility


Electrical property refers to the response of a material to an applied electric field. One of the principal characteristics of materials is their ability (or lack of ability) to conduct electrical current. Indeed, materials are classified by this property, that is, they are divided into conductors, semiconductors, and nonconductors.

See also: Electrical Properties

Magnetic property refers to the response of a material to an applied magnetic field. The macroscopic magnetic properties of a material are a consequence of interactions between an external magnetic field and the magnetic dipole moments of the constituent atoms. Different materials react to the application of magnetic field differently.

See also: Magnetic Properties

Electrical Resistivity of Ruthenium

Electrical resistivity of Ruthenium is 71 nΩ⋅m.

Electrical conductivity and its converse, electrical resistivity, is a fundamental property of a material that quantifies how Ruthenium conducts the flow of electric current. Electrical conductivity or specific conductance is the reciprocal of electrical resistivity.

Magnetic Susceptibility of Ruthenium

Magnetic susceptibility of Ruthenium is +39e-6 cm^3/mol.

In electromagnetism, magnetic susceptibility is the measure of the magnetization of a substance. Magnetic susceptibility is a dimensionless proportionality factor that indicates the degree of magnetization of Ruthenium in response to an applied magnetic field.

Electrical Resistivity of Elements

Periodic Table of Elements - electrical resistivity

Magnetic Susceptibility of Elements

Application and prices of other elements

Ruthenium - Comparison of Properties and Prices

Periodic Table in 8K resolution

Other properties of Ruthenium