Facebook Instagram Youtube Twitter

Lutetium – Properties – Price – Applications – Production

Lutetium-properties-price-application-production

About Lutetium

Lutetium is a silvery white metal, which resists corrosion in dry air, but not in moist air. Lutetium is the last element in the lanthanide series, and it is traditionally counted among the rare earths.

Summary

Element Lutetium
Atomic number 71
Element category Rare Earth Metal
Phase at STP Solid
Density 9.841 g/cm3
Ultimate Tensile Strength N/A
Yield Strength N/A
Young’s Modulus of Elasticity 68.6 GPa
Mohs Scale N/A
Brinell Hardness 900 MPa
Vickers Hardness 1100 MPa
Melting Point 1663 °C
Boiling Point 3402 °C
Thermal Conductivity 16 W/mK
Thermal Expansion Coefficient 9.9 µm/mK
Specific Heat 0.15 J/g K
Heat of Fusion 18.6 kJ/mol
Heat of Vaporization 355.9 kJ/mol
Electrical resistivity [nanoOhm meter] 582
Magnetic Susceptibility N/A

Applications of Lutetium

Lutetium is not extensively used metal. Most lutetium is used only in research. One of its few commercial uses is as a catalyst for cracking hydrocarbons in oil refineries. It is used in detectors of positron emission topography that detects cellular activity of the body.

Lutetium-applications

Production and Price of Lutetium

Raw materials prices change daily. They are primarily driven by supply, demand and energy prices. In 2019, prices of pure Lutetium were at around 69000 $/kg.

Its principal commercial source is as a by-product from the processing of the rare earth phosphate mineral monazite (Ce,La,…)PO4, which has concentrations of only 0.0001% of the element. Monazite is an important ore for thorium, lanthanum, and cerium. It is often found in placer deposits. India, Madagascar, and South Africa have large deposits of monazite sands. The deposits in India are particularly rich in monazite.

Lutetium-periodic-table

Source: www.luciteria.com

Mechanical Properties of Lutetium

Lutetium-mechanical-properties-strength-hardness-crystal-structure

Strength of Lutetium

In mechanics of materials, the strength of a material is its ability to withstand an applied load without failure or plastic deformation. Strength of materials basically considers the relationship between the external loads applied to a material and the resulting deformation or change in material dimensions. In designing structures and machines, it is important to consider these factors, in order that the material selected will have adequate strength to resist applied loads or forces and retain its original shape. Strength of a material is its ability to withstand this applied load without failure or plastic deformation.

For tensile stress, the capacity of a material or structure to withstand loads tending to elongate is known as ultimate tensile strength (UTS). Yield strength or yield stress is the material property defined as the stress at which a material begins to deform plastically whereas yield point is the point where nonlinear (elastic + plastic) deformation begins.

See also: Strength of Materials

Ultimate Tensile Strength of Lutetium

Ultimate tensile strength of Lutetium is N/A.

Yield Strength of Lutetium

Yield strength of Lutetium is N/A.

Modulus of Elasticity of Lutetium

The Young’s modulus of elasticity of Lutetium is N/A.

Hardness of Lutetium

In materials science, hardness is the ability to withstand surface indentation (localized plastic deformation) and scratchingBrinell hardness test is one of indentation hardness tests, that has been developed for hardness testing. In Brinell tests, a hard, spherical indenter is forced under a specific load into the surface of the metal to be tested.

Brinell hardness of Lutetium is approximately 900 MPa.

The Vickers hardness test method was developed by Robert L. Smith and George E. Sandland at Vickers Ltd as an alternative to the Brinell method to measure the hardness of materials. The Vickers hardness test method can be also used as a microhardness test method, which is mostly used for small parts, thin sections, or case depth work.

Vickers hardness of Lutetium is approximately 1100 MPa.

Scratch hardness is the measure of how resistant a sample is to permanent plastic deformation due to friction from a sharp object. The most common scale for this qualitative test is Mohs scale, which is used in mineralogy. The Mohs scale of mineral hardness is based on the ability of one natural sample of mineral to scratch another mineral visibly.

Lutetium is has a hardness of approximately N/A.

See also: Hardness of Materials

Lutetium – Crystal Structure

A possible crystal structure of Lutetium is hexagonal close-packed structure.

crystal structures - FCC, BCC, HCP

In metals, and in many other solids, the atoms are arranged in regular arrays called crystals. A crystal lattice is a repeating pattern of mathematical points that extends throughout space. The forces of chemical bonding causes this repetition. It is this repeated pattern which control properties like strength, ductility, density, conductivity (property of conducting or transmitting heat, electricity, etc.), and shape. There are 14 general types of such patterns known as Bravais lattices.

See also: Crystal Structure of Materials

Crystal Structure of Lutetium
Crystal Structure of Lutetium is: hexagonal close-packed

Strength of Elements

Elasticity of Elements

Hardness of Elements

 

Thermal Properties of Lutetium

Lutetium-melting-point-conductivity-thermal-properties

Lutetium – Melting Point and Boiling Point

Melting point of Lutetium is 1663°C.

Boiling point of Lutetium is 3402°C.

Note that, these points are associated with the standard atmospheric pressure.

Lutetium – Thermal Conductivity

Thermal conductivity of Lutetium is 16 W/(m·K).

The heat transfer characteristics of a solid material are measured by a property called the thermal conductivity, k (or λ), measured in W/m.K. It is a measure of a substance’s ability to transfer heat through a material by conduction. Note that Fourier’s law applies for all matter, regardless of its state (solid, liquid, or gas), therefore, it is also defined for liquids and gases.

Coefficient of Thermal Expansion of Lutetium

Linear thermal expansion coefficient of Lutetium is 9.9 µm/(m·K)

Thermal expansion is generally the tendency of matter to change its dimensions in response to a change in temperature. It is usually expressed as a fractional change in length or volume per unit temperature change.

Lutetium – Specific Heat, Latent Heat of Fusion, Latent Heat of Vaporization

Specific heat of Lutetium is 0.15 J/g K.

Heat capacity is an extensive property of matter, meaning it is proportional to the size of the system. Heat capacity C has the unit of energy per degree or energy per kelvin. When expressing the same phenomenon as an intensive property, the heat capacity is divided by the amount of substance, mass, or volume, thus the quantity is independent of the size or extent of the sample.

Latent Heat of Fusion of Lutetium is 18.6 kJ/mol.

Latent Heat of Vaporization of Lutetium is 355.9 kJ/mol.

Latent heat is the amount of heat added to or removed from a substance to produce a change in phase. This energy breaks down the intermolecular attractive forces, and also must provide the energy necessary to expand the gas (the pΔV work). When latent heat is added, no temperature change occurs. The enthalpy of vaporization is a function of the pressure at which that transformation takes place.

Melting Point of Elements

Periodic Table of Elements - melting point

Thermal Conductivity of Elements

Periodic Table of Elements - thermal conductivity

Thermal Expansion of Elements

Periodic Table of Elements - thermal expansion

Heat Capacity of Elements

Periodic Table of Elements - heat capacity

Heat of Fusion of Elements

Periodic Table of Elements - latent heat fusion

Heat of Vaporization of Elements

Periodic Table of Elements - latent heat vaporization

Lutetium – Electrical Resistivity – Magnetic Susceptibility

Lutetium-electrical-resistivity-magnetic-susceptibility

Electrical property refers to the response of a material to an applied electric field. One of the principal characteristics of materials is their ability (or lack of ability) to conduct electrical current. Indeed, materials are classified by this property, that is, they are divided into conductors, semiconductors, and nonconductors.

See also: Electrical Properties

Magnetic property refers to the response of a material to an applied magnetic field. The macroscopic magnetic properties of a material are a consequence of interactions between an external magnetic field and the magnetic dipole moments of the constituent atoms. Different materials react to the application of magnetic field differently.

See also: Magnetic Properties

Electrical Resistivity of Lutetium

Electrical resistivity of Lutetium is 582 nΩ⋅m.

Electrical conductivity and its converse, electrical resistivity, is a fundamental property of a material that quantifies how Lutetium conducts the flow of electric current. Electrical conductivity or specific conductance is the reciprocal of electrical resistivity.

Magnetic Susceptibility of Lutetium

Magnetic susceptibility of Lutetium is N/A.

In electromagnetism, magnetic susceptibility is the measure of the magnetization of a substance. Magnetic susceptibility is a dimensionless proportionality factor that indicates the degree of magnetization of Lutetium in response to an applied magnetic field.

Electrical Resistivity of Elements

Periodic Table of Elements - electrical resistivity

Magnetic Susceptibility of Elements

Application and prices of other elements

Lutetium - Comparison of Properties and Prices

Periodic Table in 8K resolution

Other properties of Lutetium