Facebook Instagram Youtube Twitter

Rhenium – Properties – Price – Applications – Production


About Rhenium

Rhenium is a silvery-white, heavy, third-row transition metal in group 7 of the periodic table.


Element Rhenium
Atomic number 75
Element category Transition Metal
Phase at STP Solid
Density 21.02 g/cm3
Ultimate Tensile Strength 1070 MPa
Yield Strength 290 MPa
Young’s Modulus of Elasticity 463 GPa
Mohs Scale 7
Brinell Hardness 1400 MPa
Vickers Hardness 2500 MPa
Melting Point 3180 °C
Boiling Point 5600 °C
Thermal Conductivity 48 W/mK
Thermal Expansion Coefficient 6.2 µm/mK
Specific Heat 0.13 J/g K
Heat of Fusion 33.2 kJ/mol
Heat of Vaporization 715 kJ/mol
Electrical resistivity [nanoOhm meter] 193
Magnetic Susceptibility +67e-6 cm^3/mol

Applications of Rhenium

More than 80% of the global rhenium usage is in high-temperature superalloys for aircraft applications like turbine blades and engine parts. These alloys contain up to 6% rhenium, making jet engine construction the largest single use for the element. Rhenium is added to nickel-based super alloys to improve creep strength of the alloys. The remaining demand is mostly from petrochemical refining industries. Platinum-rhenium catalysts that are chiefly used in lead-free, high-octane gasoline are another major application of rhenium.


Production and Price of Rhenium

Raw materials prices change daily. They are primarily driven by supply, demand and energy prices. In 2019, prices of pure Rhenium were at around 5400 $/kg.

Because of the low availability relative to demand, rhenium is expensive, with price reaching an all-time high in 2008/2009 of US$10,600 per kilogram (US$4,800 per pound). Due to increases in rhenium recycling and a drop in demand for rhenium in catalysts, the price of rhenium has dropped to US$2,844 per kilogram (US$1,290 per pound) as of July 2018. Approximately all principal rhenium production (rhenium produced by mining rather than through recycling) is as a by-product of copper mining. Total world production is between 40 and 50 tons/year; the main producers are in Chile, the United States, Peru, and Poland.


Source: www.luciteria.com

Mechanical Properties of Rhenium


Strength of Rhenium

In mechanics of materials, the strength of a material is its ability to withstand an applied load without failure or plastic deformation. Strength of materials basically considers the relationship between the external loads applied to a material and the resulting deformation or change in material dimensions. In designing structures and machines, it is important to consider these factors, in order that the material selected will have adequate strength to resist applied loads or forces and retain its original shape. Strength of a material is its ability to withstand this applied load without failure or plastic deformation.

For tensile stress, the capacity of a material or structure to withstand loads tending to elongate is known as ultimate tensile strength (UTS). Yield strength or yield stress is the material property defined as the stress at which a material begins to deform plastically whereas yield point is the point where nonlinear (elastic + plastic) deformation begins.

See also: Strength of Materials

Ultimate Tensile Strength of Rhenium

Ultimate tensile strength of Rhenium is 1070 MPa.

Yield Strength of Rhenium

Yield strength of Rhenium is 290 MPa.

Modulus of Elasticity of Rhenium

The Young’s modulus of elasticity of Rhenium is 290 MPa.

Hardness of Rhenium

In materials science, hardness is the ability to withstand surface indentation (localized plastic deformation) and scratchingBrinell hardness test is one of indentation hardness tests, that has been developed for hardness testing. In Brinell tests, a hard, spherical indenter is forced under a specific load into the surface of the metal to be tested.

Brinell hardness of Rhenium is approximately 1400 MPa.

The Vickers hardness test method was developed by Robert L. Smith and George E. Sandland at Vickers Ltd as an alternative to the Brinell method to measure the hardness of materials. The Vickers hardness test method can be also used as a microhardness test method, which is mostly used for small parts, thin sections, or case depth work.

Vickers hardness of Rhenium is approximately 2500 MPa.

Scratch hardness is the measure of how resistant a sample is to permanent plastic deformation due to friction from a sharp object. The most common scale for this qualitative test is Mohs scale, which is used in mineralogy. The Mohs scale of mineral hardness is based on the ability of one natural sample of mineral to scratch another mineral visibly.

Rhenium is has a hardness of approximately 7.

See also: Hardness of Materials

Rhenium – Crystal Structure

A possible crystal structure of Rhenium is hexagonal close-packed structure.

crystal structures - FCC, BCC, HCP

In metals, and in many other solids, the atoms are arranged in regular arrays called crystals. A crystal lattice is a repeating pattern of mathematical points that extends throughout space. The forces of chemical bonding causes this repetition. It is this repeated pattern which control properties like strength, ductility, density, conductivity (property of conducting or transmitting heat, electricity, etc.), and shape. There are 14 general types of such patterns known as Bravais lattices.

See also: Crystal Structure of Materials

Crystal Structure of Rhenium
Crystal Structure of Rhenium is: hexagonal close-packed

Strength of Elements

Elasticity of Elements

Hardness of Elements


Thermal Properties of Rhenium


Rhenium – Melting Point and Boiling Point

Melting point of Rhenium is 3180°C.

Boiling point of Rhenium is 5600°C.

Note that, these points are associated with the standard atmospheric pressure.

Rhenium – Thermal Conductivity

Thermal conductivity of Rhenium is 48 W/(m·K).

The heat transfer characteristics of a solid material are measured by a property called the thermal conductivity, k (or λ), measured in W/m.K. It is a measure of a substance’s ability to transfer heat through a material by conduction. Note that Fourier’s law applies for all matter, regardless of its state (solid, liquid, or gas), therefore, it is also defined for liquids and gases.

Coefficient of Thermal Expansion of Rhenium

Linear thermal expansion coefficient of Rhenium is 6.2 µm/(m·K)

Thermal expansion is generally the tendency of matter to change its dimensions in response to a change in temperature. It is usually expressed as a fractional change in length or volume per unit temperature change.

Rhenium – Specific Heat, Latent Heat of Fusion, Latent Heat of Vaporization

Specific heat of Rhenium is 0.13 J/g K.

Heat capacity is an extensive property of matter, meaning it is proportional to the size of the system. Heat capacity C has the unit of energy per degree or energy per kelvin. When expressing the same phenomenon as an intensive property, the heat capacity is divided by the amount of substance, mass, or volume, thus the quantity is independent of the size or extent of the sample.

Latent Heat of Fusion of Rhenium is 33.2 kJ/mol.

Latent Heat of Vaporization of Rhenium is 715 kJ/mol.

Latent heat is the amount of heat added to or removed from a substance to produce a change in phase. This energy breaks down the intermolecular attractive forces, and also must provide the energy necessary to expand the gas (the pΔV work). When latent heat is added, no temperature change occurs. The enthalpy of vaporization is a function of the pressure at which that transformation takes place.

Melting Point of Elements

Periodic Table of Elements - melting point

Thermal Conductivity of Elements

Periodic Table of Elements - thermal conductivity

Thermal Expansion of Elements

Periodic Table of Elements - thermal expansion

Heat Capacity of Elements

Periodic Table of Elements - heat capacity

Heat of Fusion of Elements

Periodic Table of Elements - latent heat fusion

Heat of Vaporization of Elements

Periodic Table of Elements - latent heat vaporization

Rhenium – Electrical Resistivity – Magnetic Susceptibility


Electrical property refers to the response of a material to an applied electric field. One of the principal characteristics of materials is their ability (or lack of ability) to conduct electrical current. Indeed, materials are classified by this property, that is, they are divided into conductors, semiconductors, and nonconductors.

See also: Electrical Properties

Magnetic property refers to the response of a material to an applied magnetic field. The macroscopic magnetic properties of a material are a consequence of interactions between an external magnetic field and the magnetic dipole moments of the constituent atoms. Different materials react to the application of magnetic field differently.

See also: Magnetic Properties

Electrical Resistivity of Rhenium

Electrical resistivity of Rhenium is 193 nΩ⋅m.

Electrical conductivity and its converse, electrical resistivity, is a fundamental property of a material that quantifies how Rhenium conducts the flow of electric current. Electrical conductivity or specific conductance is the reciprocal of electrical resistivity.

Magnetic Susceptibility of Rhenium

Magnetic susceptibility of Rhenium is +67e-6 cm^3/mol.

In electromagnetism, magnetic susceptibility is the measure of the magnetization of a substance. Magnetic susceptibility is a dimensionless proportionality factor that indicates the degree of magnetization of Rhenium in response to an applied magnetic field.

Electrical Resistivity of Elements

Periodic Table of Elements - electrical resistivity

Magnetic Susceptibility of Elements

Application and prices of other elements

Rhenium - Comparison of Properties and Prices

Periodic Table in 8K resolution

Other properties of Rhenium