Facebook Instagram Youtube Twitter

Chrome – Propriétés – Prix – Applications – Production

Chrome-propriétés-prix-application-production

À propos du Chrome

Le chrome est un métal gris acier, brillant, dur et cassant qui prend un poli élevé, résiste au ternissement et a un point de fusion élevé. Un développement majeur a été la découverte que l’acier pouvait être rendu hautement résistant à la corrosion et à la décoloration en ajoutant du chrome métallique pour former de l’acier inoxydable.

Résumé

Élément Chrome
Numéro atomique 24
Catégorie d’élément Métal de transition
Phase à STP Solide
Densité 7,14 g/cm3
Résistance à la traction ultime 550 MPa
Limite d’élasticité 131 MPa
Module de Young 279 GPa
Échelle de Mohs 8,5
Dureté Brinell 1120 MPa
Dureté Vickers 1060 MPa
Point de fusion 1907°C
Point d’ébullition 2671°C
Conductivité thermique 93,7 W/mK
Coefficient de dilatation thermique 4,9 µm/mK
Chaleur spécifique 0,45 J/g·K
Température de fusion 16,9 kJ/mol
Chaleur de vaporisation 344,3 kJ/mol
Résistivité électrique [nanoohmmètre] 125
Susceptibilité magnétique + 280e-6 cm^3/mol


Applications du Chrome

Le chrome est l’un des métaux industriels les plus importants et indispensables en raison de sa dureté et de sa résistance à la corrosion. Mais il est utilisé pour plus que la production d’acier inoxydable et d’alliages non ferreux ; il est également utilisé pour créer des pigments et des produits chimiques utilisés pour traiter le cuir. En métallurgie, le chrome augmente la dureté, la résistance et la résistance à la corrosion. L’effet de renforcement de la formation de carbures métalliques stables aux joints de grains et la forte augmentation de la résistance à la corrosion ont fait du chrome un matériau d’alliage important pour l’acier. De manière générale, la concentration spécifiée pour la plupart des grades est d’environ 4 %. Ce niveau semble donner le meilleur équilibre entre dureté et ténacité. Le chrome joue un rôle important dans le mécanisme de durcissement et est considéré comme irremplaçable. A des températures plus élevées, le chrome contribue à une résistance accrue. Il est habituellement utilisé pour des applications de cette nature en conjonction avec du molybdène. La résistance des aciers inoxydables est basée sur la passivation. Pour que la passivation se produise et reste stable, l’alliage Fe-Cr doit avoir une teneur minimale en chrome d’environ 11 % en poids, au-dessus de laquelle la passivation peut se produire et en dessous de laquelle elle est impossible.


 
 

Applications de chrome

Production et prix du Chrome

Les prix des matières premières changent quotidiennement. Ils dépendent principalement de l’offre, de la demande et des prix de l’énergie. En 2019, les prix du Chrome pur se situaient autour de 100 $/kg.

Le chrome est extrait sous forme de minerai de chromite. Globalement, ce minerai est disponible en Inde, en Afrique du Sud, en Finlande, au Zimbabwe, au Kazakhstan et aux Philippines. Commercialement, le chrome est produit à partir de chromite en utilisant des réactions silicothermiques ou aluminothermiques. Des processus de torréfaction et de lixiviation sont également utilisés.

Tableau périodique du chrome

Source : www.luciteria.com

Propriétés mécaniques du Chrome

Chrome-propriétés-mécaniques-résistance-dureté-structure cristalline

Force du Chrome

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Pour la contrainte de traction, la capacité d’un matériau ou d’une structure à supporter des charges tendant à s’allonger est appelée résistance ultime à la traction (UTS). La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence.

Voir aussi: Résistance des matériaux

Résistance à la traction ultime du Chrome

La résistance à la traction ultime du chrome est de 550 MPa.

Limite d’élasticité du Chrome

La limite d’élasticité du chrome  est de 131 MPa.

Module de Young du Chrome

Le module de Young du chrome est de 279 GPa.

Dureté du Chrome

En science des matériaux, la dureté est la capacité à résister à  l’indentation de surface (déformation plastique localisée) et  aux rayuresLe test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un pénétrateur sphérique dur  est forcé sous une charge spécifique dans la surface du métal à tester.

La dureté Brinell du chrome est d’environ 1120 MPa.

La méthode d’essai de dureté Vickers a été développée par Robert L. Smith et George E. Sandland chez Vickers Ltd comme alternative à la méthode Brinell pour mesurer la dureté des matériaux. La méthode d’essai de dureté Vickers peut également être utilisée comme méthode d’essai de microdureté, qui est principalement utilisée pour les petites pièces, les sections minces ou les travaux en profondeur.

La dureté Vickers du chrome est d’environ 1060 MPa.

La dureté à la rayure est la mesure de la résistance d’un échantillon à la déformation plastique permanente due au frottement d’un objet pointu. L’échelle la plus courante pour ce test qualitatif est l’échelle de Mohs, qui est utilisée en minéralogie. L’échelle de Mohs de dureté minérale est basée sur la capacité d’un échantillon naturel de minéral à rayer visiblement un autre minéral.

Le chrome a une dureté d’environ 8,5.

Voir aussi: Dureté des matériaux

Chrome – Structure cristalline

Une structure cristalline possible du chrome est une structure cubique centrée.

structures cristallines - FCC, BCC, HCP

Dans les métaux et dans de nombreux autres solides, les atomes sont disposés en réseaux réguliers appelés cristaux. Un réseau cristallin est un motif répétitif de points mathématiques qui s’étend dans tout l’espace. Les forces de la liaison chimique provoquent cette répétition. C’est ce motif répété qui contrôle les propriétés telles que la résistance, la ductilité, la densité, la conductivité (propriété de conduire ou de transmettre la chaleur, l’électricité, etc.) et la forme. Il existe 14 types généraux de ces modèles connus sous le nom de réseaux de Bravais.

Voir aussi: Structure cristalline des matériaux

Structure cristalline du Chrome
La structure cristalline du chrome est : cubique centré sur le corps

Force des éléments

Élasticité des éléments

Dureté des éléments

Propriétés thermiques du Chrome

Chrome-point de fusion-conductivité-propriétés-thermiques

Chrome – Point de fusion et point d’ébullition

Le point de fusion du chrome est de 1907°C.

Le point d’ébullition du chrome est de 2671°C.

Notez que ces points sont associés à la pression atmosphérique standard.

Chrome – Conductivité thermique

La conductivité thermique du chrome est de 93,7 W/(m·K).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductivité thermique, k (ou λ), mesurée en W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par conduction. Notez que la loi de Fourier s’applique à toute matière, quel que soit son état (solide, liquide ou gazeux), par conséquent, elle est également définie pour les liquides et les gaz.

Coefficient de dilatation thermique du Chrome

Le coefficient de dilatation thermique linéaire du chrome est  de 4,9 µm/(m·K)

La dilatation thermique est généralement la tendance de la matière à changer ses dimensions en réponse à un changement de température. Il est généralement exprimé sous la forme d’un changement fractionnaire de longueur ou de volume par unité de changement de température.

Chrome – Chaleur spécifique, chaleur latente de fusion, chaleur latente de vaporisation

La chaleur spécifique du chrome est de 0,45 J/g K.

La capacité calorifique est une propriété extensive de la matière, c’est-à-dire qu’elle est proportionnelle à la taille du système. La capacité thermique C a l’unité d’énergie par degré ou d’énergie par kelvin. Lors de l’expression du même phénomène en tant que propriété intensive, la capacité thermique est divisée par la quantité de substance, de masse ou de volume, ainsi la quantité est indépendante de la taille ou de l’étendue de l’échantillon.

La chaleur latente de fusion du chrome est de 16,9 kJ/mol.

La chaleur latente de vaporisation du chrome est de 344,3 kJ/mol.

La chaleur latente est la quantité de chaleur ajoutée ou retirée d’une substance pour produire un changement de phase. Cette énergie décompose les forces d’attraction intermoléculaires, et doit également fournir l’énergie nécessaire pour dilater le gaz (le pΔV travail). Lorsque la chaleur latente est ajoutée, aucun changement de température ne se produit. L’enthalpie de vaporisation est fonction de la pression à laquelle cette transformation a lieu.

Point de fusion des éléments

Tableau périodique des éléments - point de fusion

Conductivité thermique des éléments

Tableau périodique des éléments - conductivité thermique

Dilatation thermique des éléments

Tableau périodique des éléments - dilatation thermique

Capacité calorifique des éléments

Tableau périodique des éléments - capacité calorifique

Chaleur de fusion des éléments

Tableau périodique des éléments - fusion par chaleur latente

Chaleur de vaporisation des éléments

Tableau périodique des éléments - vaporisation de la chaleur latente

Chrome – Résistivité électrique – Susceptibilité magnétique

Chrome-résistivité-électrique-susceptibilité-magnétique

La propriété électrique fait référence à la réponse d’un matériau à un champ électrique appliqué. L’une des principales caractéristiques des matériaux est leur capacité (ou leur incapacité) à conduire le courant électrique. En effet, les matériaux sont classés selon cette propriété, c’est-à-dire qu’ils sont divisés en conducteurs, semi-conducteurs et non-conducteurs.

Voir aussi: Propriétés électriques

La propriété magnétique fait référence à la réponse d’un matériau à un champ magnétique appliqué. Les propriétés magnétiques macroscopiques d’un matériau sont une conséquence des interactions entre un champ magnétique extérieur et les moments dipolaires magnétiques des atomes qui le constituent. Différents matériaux réagissent différemment à l’application du champ magnétique.

Voir aussi: Propriétés magnétiques

Résistivité électrique du Chrome

La résistivité électrique du chrome est de 125 nΩ⋅m.

La conductivité électrique et son inverse, la résistivité électrique, est une propriété fondamentale d’un matériau qui quantifie la manière dont le chrome conduit le flux de courant électrique. La conductivité électrique ou conductance spécifique est l’inverse de la résistivité électrique.

Susceptibilité magnétique du Chrome

La susceptibilité magnétique du chrome est de +280e-6 cm^3/mol.

En électromagnétisme, la susceptibilité magnétique est la mesure de l’aimantation d’une substance. La susceptibilité magnétique est un facteur de proportionnalité sans dimension qui indique le degré d’aimantation du chrome en réponse à un champ magnétique appliqué.

Résistivité électrique des éléments

Tableau périodique des éléments - résistivité électrique

Susceptibilité magnétique des éléments

Application et prix des autres éléments

Chrome - Comparaison des propriétés et des prix

Tableau périodique en résolution 8K

Autres propriétés du Chrome