Facebook Instagram Youtube Twitter

Technétium – Propriétés – Prix – Applications – Production

Technétium-propriétés-prix-application-production

À propos du Technétium

Le technétium est l’élément le plus léger dont les isotopes sont tous radioactifs ; aucun n’est stable. Presque tout le technétium est produit synthétiquement et seules des quantités infimes se trouvent dans la croûte terrestre. Les propriétés chimiques de ce métal de transition gris argenté et cristallin sont intermédiaires entre le rhénium et le manganèse.

Résumé

Élément Technétium
Numéro atomique 43
Catégorie d’élément Métal de transition
Phase à STP Synthétique
Densité 11,5 g/cm3
Résistance à la traction ultime N / A
Limite d’élasticité N / A
Module de Young N / A
Échelle de Mohs N / A
Dureté Brinell N / A
Dureté Vickers N / A
Point de fusion 2157°C
Point d’ébullition 4265°C
Conductivité thermique 50,6 W/mK
Coefficient de dilatation thermique 7,1 µm/mK
Chaleur spécifique 0,21 J/g·K
Température de fusion 24 kJ/mol
Chaleur de vaporisation 660 kJ/mol
Résistivité électrique [nanoohmmètre] 200
Susceptibilité magnétique +270e-6cm^3/mol


Applications du Technétium

Un isomère nucléaire émetteur de rayons gamma à courte durée de vie, le technétium-99m, est utilisé en médecine nucléaire pour une grande variété de tests, tels que le diagnostic du cancer des os. L’état fondamental du nucléide technétium-99 est utilisé comme source de particules bêta exempte de rayons gamma.


 
 

Applications au technétium

Production et prix du Technétium

Les prix des matières premières changent quotidiennement. Ils dépendent principalement de l’offre, de la demande et des prix de l’énergie. En 2019, les prix du Technétium pur se situaient autour de 100000 $/kg.

La grande majorité du technétium-99m utilisé dans le travail médical est produit en irradiant des cibles dédiées d’uranium hautement enrichi dans un réacteur, en extrayant le molybdène-99 des cibles dans les installations de retraitement et en récupérant au centre de diagnostic le technétium-99m produit lors de la désintégration de molybdène-99.

Tableau périodique du technétium

Source : www.luciteria.com

Propriétés mécaniques du Technétium

Technétium-propriétés-mécaniques-résistance-dureté-structure cristalline

Force du Technétium

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Pour la contrainte de traction, la capacité d’un matériau ou d’une structure à supporter des charges tendant à s’allonger est appelée résistance ultime à la traction (UTS). La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence.

Voir aussi: Résistance des matériaux

Résistance à la traction ultime du Technétium

La résistance à la traction ultime du technétium est N/A.

Limite d’élasticité du Technétium

La limite d’élasticité du technétium  est N/A.

Module de Young du Technétium

Le module de Young du technétium est N/A.

Dureté du Technétium

En science des matériaux, la dureté est la capacité à résister à l’indentation de surface (déformation plastique localisée) et  aux rayuresLe test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un pénétrateur sphérique dur  est forcé sous une charge spécifique dans la surface du métal à tester.

La dureté Brinell du technétium est d’environ N/A.

La méthode d’essai de dureté Vickers a été développée par Robert L. Smith et George E. Sandland chez Vickers Ltd comme alternative à la méthode Brinell pour mesurer la dureté des matériaux. La méthode d’essai de dureté Vickers peut également être utilisée comme méthode d’essai de microdureté, qui est principalement utilisée pour les petites pièces, les sections minces ou les travaux en profondeur.

La dureté Vickers du technétium est d’environ N/A.

La dureté à la rayure est la mesure de la résistance d’un échantillon à la déformation plastique permanente due au frottement d’un objet pointu. L’échelle la plus courante pour ce test qualitatif est l’échelle de Mohs, qui est utilisée en minéralogie. L’échelle de Mohs de dureté minérale est basée sur la capacité d’un échantillon naturel de minéral à rayer visiblement un autre minéral.

Le technétium a une dureté d’environ N/A.

Voir aussi: Dureté des matériaux

Technétium – Structure cristalline

Une structure cristalline possible du technétium est une structure hexagonale compacte.

structures cristallines - FCC, BCC, HCP

Dans les métaux et dans de nombreux autres solides, les atomes sont disposés en réseaux réguliers appelés cristaux. Un réseau cristallin est un motif répétitif de points mathématiques qui s’étend dans tout l’espace. Les forces de la liaison chimique provoquent cette répétition. C’est ce motif répété qui contrôle les propriétés telles que la résistance, la ductilité, la densité, la conductivité (propriété de conduire ou de transmettre la chaleur, l’électricité, etc.) et la forme. Il existe 14 types généraux de ces modèles connus sous le nom de réseaux de Bravais.

Voir aussi: Structure cristalline des matériaux

Structure cristalline du Technétium
La structure cristalline du technétium est : hexagonale compacte

Force des éléments

Élasticité des éléments

Dureté des éléments

Propriétés thermiques du Technétium

Technétium-point-de-fusion-conductivité-propriétés-thermiques

Technétium – Point de fusion et point d’ébullition

Le point de fusion du technétium est de 2157°C.

Le point d’ébullition du technétium est de 4265°C.

Notez que ces points sont associés à la pression atmosphérique standard.

Technétium – Conductivité thermique

La conductivité thermique du  technétium est de 50,6 W/(m·K).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductivité thermique, k (ou λ), mesurée en W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par conduction. Notez que la loi de Fourier s’applique à toute matière, quel que soit son état (solide, liquide ou gazeux), par conséquent, elle est également définie pour les liquides et les gaz.

Coefficient de dilatation thermique du Technétium

Le coefficient de dilatation thermique linéaire du technétium est  de 7,1 µm/(m·K)

La dilatation thermique est généralement la tendance de la matière à changer ses dimensions en réponse à un changement de température. Il est généralement exprimé sous la forme d’un changement fractionnaire de longueur ou de volume par unité de changement de température.

Technétium – Chaleur spécifique, chaleur latente de fusion, chaleur latente de vaporisation

La chaleur spécifique du technétium est de 0,21 J/g K.

La capacité calorifique est une propriété extensive de la matière, c’est-à-dire qu’elle est proportionnelle à la taille du système. La capacité thermique C a l’unité d’énergie par degré ou d’énergie par kelvin. Lors de l’expression du même phénomène en tant que propriété intensive, la capacité thermique est divisée par la quantité de substance, de masse ou de volume, ainsi la quantité est indépendante de la taille ou de l’étendue de l’échantillon.

La chaleur latente de fusion du technétium est de 24 kJ/mol.

La chaleur latente de vaporisation du technétium est de 660 kJ/mol.

La chaleur latente est la quantité de chaleur ajoutée ou retirée d’une substance pour produire un changement de phase. Cette énergie décompose les forces attractives intermoléculaires, et doit également fournir l’énergie nécessaire pour dilater le gaz (le pΔV travail). Lorsque la chaleur latente est ajoutée, aucun changement de température ne se produit. L’enthalpie de vaporisation est fonction de la pression à laquelle cette transformation a lieu.

Point de fusion des éléments

Tableau périodique des éléments - point de fusion

Conductivité thermique des éléments

Tableau périodique des éléments - conductivité thermique

Dilatation thermique des éléments

Tableau périodique des éléments - dilatation thermique

Capacité calorifique des éléments

Tableau périodique des éléments - capacité calorifique

Chaleur de fusion des éléments

Tableau périodique des éléments - fusion par chaleur latente

Chaleur de vaporisation des éléments

Tableau périodique des éléments - vaporisation de la chaleur latente

Technétium – Résistivité électrique – Susceptibilité magnétique

Technétium-résistivité-électrique-susceptibilité-magnétique

La propriété électrique fait référence à la réponse d’un matériau à un champ électrique appliqué. L’une des principales caractéristiques des matériaux est leur capacité (ou leur incapacité) à conduire le courant électrique. En effet, les matériaux sont classés selon cette propriété, c’est-à-dire qu’ils sont divisés en conducteurs, semi-conducteurs et non-conducteurs.

Voir aussi: Propriétés électriques

La propriété magnétique fait référence à la réponse d’un matériau à un champ magnétique appliqué. Les propriétés magnétiques macroscopiques d’un matériau sont une conséquence des interactions entre un champ magnétique extérieur et les moments dipolaires magnétiques des atomes  qui le constituent. Différents matériaux réagissent différemment à l’application du champ magnétique.

Voir aussi :  Propriétés magnétiques

Résistivité électrique du Technétium

La résistivité électrique du Technétium est de 200 nΩ⋅m.

La conductivité électrique et son inverse, la résistivité électrique, est une propriété fondamentale d’un matériau qui quantifie la manière dont le technétium conduit le flux de courant électrique. La conductivité électrique ou conductance spécifique est l’inverse de la résistivité électrique.

Susceptibilité magnétique du Technétium

La susceptibilité magnétique du technétium est de +270e-6 cm^3/mol.

En électromagnétisme, la susceptibilité magnétique est la mesure de l’aimantation d’une substance. La susceptibilité magnétique est un facteur de proportionnalité sans dimension qui indique le degré d’aimantation du technétium en réponse à un champ magnétique appliqué.

Résistivité électrique des éléments

Tableau périodique des éléments - résistivité électrique

Susceptibilité magnétique des éléments

Application et prix des autres éléments

Technétium - Comparaison des propriétés et des prix

Tableau périodique en résolution 8K

Autres propriétés du Technétium