Facebook Instagram Youtube Twitter

Titane – Propriétés – Prix – Applications – Production

Titane-propriétés-prix-application-production

À propos du Titane

Le titane est un métal de transition brillant avec une couleur argentée, une faible densité et une résistance élevée. Le titane est résistant à la corrosion dans l’eau de mer, l’eau régale et le chlore. Le titane peut être utilisé dans les condenseurs de surface. Ces condenseurs utilisent des tubes généralement en acier inoxydable, en alliages de cuivre ou en titane selon plusieurs critères de sélection (comme la conductivité thermique ou la résistance à la corrosion). Les tubes de condenseur en titane sont généralement le meilleur choix technique, mais le titane est un matériau très coûteux et l’utilisation de tubes de condenseur en titane est associée à des coûts initiaux très élevés.

Résumé

Élément Titane
Numéro atomique 22
Catégorie d’élément Métal de transition
Phase à STP Solide
Densité 4,507 g/cm3
Résistance à la traction ultime 434 MPa, 293 MPa (pur)
Limite d’élasticité 380 MPa
Module de Young 116 GPa
Échelle de Mohs 6
Dureté Brinell 700 – 2700 MPa
Dureté Vickers 800 – 3400 MPa
Point de fusion 1668°C
Point d’ébullition 3287°C
Conductivité thermique 21,9 W/mK
Coefficient de dilatation thermique 8,6 µm/mK
Chaleur spécifique 0,52 J/g·K
Température de fusion 15,45 kJ/mol
Chaleur de vaporisation 421 kJ/mol
Résistivité électrique [nanoohmmètre] 420
Susceptibilité magnétique +153e-6cm^3/mol


Applications du Titane

Les deux propriétés les plus utiles du métal sont la résistance à la corrosion et le rapport résistance/densité, le plus élevé de tous les éléments métalliques. La résistance à la corrosion des alliages de titane à des températures normales est exceptionnellement élevée. Ces propriétés déterminent l’application du titane et de ses alliages. La première application de production de titane remonte à 1952, pour les nacelles et les pare-feu de l’avion de ligne Douglas DC-7. Une résistance spécifique élevée, une bonne résistance à la fatigue et une bonne durée de vie au fluage, ainsi qu’une bonne ténacité à la rupture sont des caractéristiques qui font du titane un métal préféré pour les applications aérospatiales. Les applications aérospatiales, y compris l’utilisation dans les composants structurels (cellule) et les moteurs à réaction, représentent toujours la plus grande part de l’utilisation de l’alliage de titane. Sur l’avion supersonique SR-71, le titane a été utilisé pour 85% de la structure. Grâce à une très grande inertie,


 
 

Applications en titane

Production et prix du Titane

Les prix des matières premières changent quotidiennement. Ils dépendent principalement de l’offre, de la demande et des prix de l’énergie. En 2019, les prix du Titane pur se situaient autour de 61 $/kg.

Le métal est extrait de ses principaux minerais par les procédés Kroll et Hunter. Le procédé de Kroll impliquait la réduction du tétrachlorure de titane (TiCl4), d’abord avec du sodium et du calcium, puis avec du magnésium, sous une atmosphère de gaz inerte. Le titane pur est plus résistant que les aciers ordinaires à faible teneur en carbone, mais 45 % plus léger. Il est également deux fois plus résistant que les alliages d’aluminium faibles, mais seulement 60 % plus lourd.

Tableau périodique du titane

Source : www.luciteria.com

Propriétés mécaniques du Titane

Titane-propriétés-mécaniques-résistance-dureté-structure cristalline

Force du Titane

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Pour la contrainte de traction, la capacité d’un matériau ou d’une structure à supporter des charges tendant à s’allonger est appelée résistance ultime à la traction (UTS). La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence.

Voir aussi: Résistance des matériaux

Résistance à la traction ultime du Titane

La résistance à la traction ultime du titane est de 434 MPa, 293 MPa (pur).

Limite d’élasticité du Titane

La limite d’élasticité du titane est de 380 MPa.

Module de Young du Titane

Le module de Young du titane est de 116 GPa.

Dureté du Titane

En science des matériaux, la dureté est la capacité à résister à  l’indentation de surface (déformation plastique localisée) et  aux rayuresLe test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un pénétrateur sphérique dur est forcé sous une charge spécifique dans la surface du métal à tester.

La dureté Brinell du titane est d’environ 700 à 2700 MPa.

La méthode d’essai de dureté Vickers a été développée par Robert L. Smith et George E. Sandland chez Vickers Ltd comme alternative à la méthode Brinell pour mesurer la dureté des matériaux. La méthode d’essai de dureté Vickers peut également être utilisée comme méthode d’essai de microdureté, qui est principalement utilisée pour les petites pièces, les sections minces ou les travaux en profondeur.

La dureté Vickers du titane est d’environ 800 à 3400 MPa.

La dureté à la rayure est la mesure de la résistance d’un échantillon à la déformation plastique permanente due au frottement d’un objet pointu. L’échelle la plus courante pour ce test qualitatif est l’échelle de Mohs, qui est utilisée en minéralogie. L’ échelle de Mohs de dureté minérale est basée sur la capacité d’un échantillon naturel de minéral à rayer visiblement un autre minéral.

Le titane a une dureté d’environ 6.

Voir aussi: Dureté des matériaux

Titane – Structure cristalline

Une structure cristalline possible du titane est une structure hexagonale compacte.

structures cristallines - FCC, BCC, HCP

Dans les métaux et dans de nombreux autres solides, les atomes sont disposés en réseaux réguliers appelés cristaux. Un réseau cristallin est un motif répétitif de points mathématiques qui s’étend dans tout l’espace. Les forces de la liaison chimique provoquent cette répétition. C’est ce motif répété qui contrôle les propriétés telles que la résistance, la ductilité, la densité, la conductivité (propriété de conduire ou de transmettre la chaleur, l’électricité, etc.) et la forme. Il existe 14 types généraux de ces modèles connus sous le nom de réseaux de Bravais.

Voir aussi: Structure cristalline des matériaux

Structure cristalline du Titane
La structure cristalline du titane est : hexagonale compacte

Force des éléments

Élasticité des éléments

Dureté des éléments

Propriétés thermiques du Titane

Titane-point-de-fusion-conductivité-propriétés-thermiques

Titane – Point de fusion et point d’ébullition

Le point de fusion du titane est de 1668°C.

Le point d’ébullition du titane est de 3287°C.

Notez que ces points sont associés à la pression atmosphérique standard.

Titane – Conductivité thermique

La conductivité thermique du titane est de 21,9  W/(m·K).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductivité thermique, k (ou λ), mesurée en W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par conduction. Notez que la loi de Fourier s’applique à toute matière, quel que soit son état (solide, liquide ou gazeux), par conséquent, elle est également définie pour les liquides et les gaz.

Coefficient de dilatation thermique du Titane

Le coefficient de dilatation thermique linéaire du titane est  de 8,6 µm/(m·K)

La dilatation thermique est généralement la tendance de la matière à changer ses dimensions en réponse à un changement de température. Il est généralement exprimé sous la forme d’un changement fractionnaire de longueur ou de volume par unité de changement de température.

Titane – Chaleur spécifique, chaleur latente de fusion, chaleur latente de vaporisation

La chaleur spécifique du titane est de 0,52 J/g K.

La capacité calorifique est une propriété extensive de la matière, c’est-à-dire qu’elle est proportionnelle à la taille du système. La capacité thermique C a l’unité d’énergie par degré ou d’énergie par kelvin. Lors de l’expression du même phénomène en tant que propriété intensive, la capacité thermique est divisée par la quantité de substance, de masse ou de volume, ainsi la quantité est indépendante de la taille ou de l’étendue de l’échantillon.

La chaleur latente de fusion du titane est de 15,45 kJ/mol.

La chaleur latente de vaporisation du titane est de 421 kJ/mol.

La chaleur latente est la quantité de chaleur ajoutée ou retirée d’une substance pour produire un changement de phase. Cette énergie décompose les forces d’attraction intermoléculaires, et doit également fournir l’énergie nécessaire pour dilater le gaz (le pΔV travail). Lorsque la chaleur latente est ajoutée, aucun changement de température ne se produit. L’enthalpie de vaporisation est fonction de la pression à laquelle cette transformation a lieu.

Point de fusion des éléments

Tableau périodique des éléments - point de fusion

Conductivité thermique des éléments

Tableau périodique des éléments - conductivité thermique

Dilatation thermique des éléments

Tableau périodique des éléments - dilatation thermique

Capacité calorifique des éléments

Tableau périodique des éléments - capacité calorifique

Chaleur de fusion des éléments

Tableau périodique des éléments - fusion par chaleur latente

Chaleur de vaporisation des éléments

Tableau périodique des éléments - vaporisation de la chaleur latente

Titane – Résistivité électrique – Susceptibilité magnétique

Titane-résistivité-électrique-susceptibilité-magnétique

La propriété électrique fait référence à la réponse d’un matériau à un champ électrique appliqué. L’une des principales caractéristiques des matériaux est leur capacité (ou leur incapacité) à conduire le courant électrique. En effet, les matériaux sont classés selon cette propriété, c’est-à-dire qu’ils sont divisés en conducteurs, semi-conducteurs et non-conducteurs.

Voir aussi: Propriétés électriques

La propriété magnétique fait référence à la réponse d’un matériau à un champ magnétique appliqué. Les propriétés magnétiques macroscopiques d’un matériau sont une conséquence des interactions entre un champ magnétique extérieur et les moments dipolaires magnétiques des atomes qui le constituent. Différents matériaux réagissent  différemment  à l’application du champ magnétique.

Voir aussi: Propriétés magnétiques

Résistivité électrique du Titane

La résistivité électrique du titane est de 420 nΩ⋅m.

La conductivité électrique et son inverse, la résistivité électrique, est une propriété fondamentale d’un matériau qui quantifie la manière dont le titane conduit le flux de courant électrique. La conductivité électrique ou conductance spécifique est l’inverse de la résistivité électrique.

Susceptibilité magnétique du Titane

La susceptibilité magnétique du titane est de  +153e-6 cm^3/mol.

En électromagnétisme, la susceptibilité magnétique est la mesure de l’aimantation d’une substance. La susceptibilité magnétique est un facteur de proportionnalité sans dimension qui indique le degré d’aimantation du titane en réponse à un champ magnétique appliqué.

Résistivité électrique des éléments

Tableau périodique des éléments - résistivité électrique

Susceptibilité magnétique des éléments

Application et prix des autres éléments

Titane - Comparaison des propriétés et des prix

Tableau périodique en résolution 8K

Autres propriétés du Titane