Facebook Instagram Youtube Twitter

Uranium – Propriétés – Prix – Applications – Production

Uranium-propriétés-prix-application-production

À propos de l’Uranium

L’uranium est un métal blanc argenté de la série des actinides du tableau périodique. L’uranium est faiblement radioactif car tous les isotopes de l’uranium sont instables, avec des demi-vies variant entre 159 200 ans et 4,5 milliards d’années. L’uranium a le poids atomique le plus élevé des éléments primordiaux. Sa densité est environ 70 % supérieure à celle du plomb et légèrement inférieure à celle de l’or ou du tungstène. L’uranium se trouve généralement à de faibles niveaux (quelques ppm – parties par million) dans toutes les roches, le sol, l’eau, les plantes et les animaux (y compris les humains). L’uranium est également présent dans l’eau de mer et peut être récupéré à partir de l’eau de mer. Des concentrations importantes d’uranium se produisent dans certaines substances telles que l’uraninite (le minerai d’uranium le plus courant), les gisements de roches phosphatées et d’autres minéraux.

280 Susceptibilité magnétique N / A

Applications de l’Uranium

La principale utilisation de l’uranium dans le secteur civil est l’alimentation des centrales nucléaires. Un kilogramme d’uranium 235 peut théoriquement produire environ 20 térajoules d’énergie, en supposant une fission complète; autant d’énergie que 1,5 million de kilogrammes (1 500 tonnes) de charbon. Un réacteur typique peut contenir environ 100 tonnes d’uranium enrichi (c’est-à-dire environ 113 tonnes de dioxyde d’uranium). Ce combustible est chargé dans, par exemple, 157 assemblages combustibles composés de plus de 45 000 crayons combustibles. Un assemblage combustible commun contient de l’énergie pendant environ 4 ans de fonctionnement à pleine puissance. Le combustible retiré (combustible nucléaire usé) contient encore environ 96 % de matière valorisable (il doit être retiré en raison de la diminution du kinf d’un assemblage). Avant (et parfois après) la découverte de la radioactivité, l’uranium était principalement utilisé en petites quantités pour les émaux de verre et de poterie jaunes, comme le verre d’uranium. L’uranium est également utilisé par l’armée pour alimenter les sous-marins nucléaires et dans les armes nucléaires. En raison de sa densité élevée, ce matériau se retrouve dans les systèmes de guidage inertiel et dans les compas gyroscopiques.[10] L’uranium appauvri est préféré aux métaux de densité similaire en raison de sa capacité à être facilement usiné et coulé ainsi que de son coût relativement faible. Le principal risque d’exposition à l’uranium appauvri est l’empoisonnement chimique par l’oxyde d’uranium plutôt que la radioactivité (l’uranium n’étant qu’un faible émetteur alpha). L’uranium appauvri est un uranium qui contient beaucoup moins d’uranium 235 que l’uranium naturel. Il est considérablement moins radioactif que l’uranium naturel. C’est un métal dense qui peut être utilisé comme lest pour les navires et comme contrepoids pour les avions. Il est également utilisé dans les munitions et les armures. L’uranium appauvri peut également être utilisé pour protéger des radiations. L’uranium appauvri est beaucoup plus efficace en raison de son Z plus élevé. L’uranium appauvri est utilisé pour le blindage des sources portables de rayons gamma. L’uranium est utilisé dans les aciers rapides comme agent d’alliage pour améliorer la résistance et la ténacité. Le trioxyde d’uranium (également appelé oxyde uranique) de formule UO3, est une poudre jaune orangé et est utilisé comme pigment pour la céramique. Dans les verres, il produit un beau « verre d’uranium » jaune verdâtre.

 
 
Applications de l'uranium

Production et prix de l’Uranium

Les prix des matières premières changent quotidiennement. Ils dépendent principalement de l’offre, de la demande et des prix de l’énergie. En 2019, les prix de l’uranium pur étaient d’environ N/A $/kg.

L’uranium se trouve généralement à de faibles niveaux (quelques ppm – parties par million) dans toutes les roches, le sol, l’eau, les plantes et les animaux (y compris les humains). L’uranium est également présent dans l’eau de mer et peut être récupéré à partir de l’eau de mer. Des concentrations importantes d’uranium se produisent dans certaines substances telles que l’uraninite (le minerai d’uranium le plus courant), les gisements de roches phosphatées et d’autres minéraux. L’uranium se trouve souvent avec du cuivre, des phosphates et d’autres minéraux ; il s’agit donc souvent d’un coproduit d’autres opérations minières. La production mondiale d’uranium en 2015 s’élevait à 60 496 tonnes. Le Kazakhstan, le Canada et l’Australie sont les trois principaux producteurs et représentent ensemble 70 % de la production mondiale d’uranium. L’uranium se trouve généralement à de faibles niveaux (quelques ppm – parties par million) dans toutes les roches, le sol, l’eau, les plantes et les animaux (y compris les humains). L’uranium est également présent dans l’eau de mer, et peut être récupéré de l’eau de mer. Mais seuls quelques-uns des minerais d’uranium connus contiennent suffisamment d’uranium (plus de 0,1 %) pour être extraits commercialement. Des concentrations importantes d’uranium se produisent dans certaines substances telles que l’uraninite (le minerai d’uranium le plus courant), les gisements de roches phosphatées et d’autres minéraux.

Tableau périodique de l'uranium

Source : www.luciteria.com

Propriétés mécaniques de l’Uranium

Uranium-propriétés-mécaniques-résistance-dureté-structure cristalline

Force de l’Uranium

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Pour la contrainte de traction, la capacité d’un matériau ou d’une structure à supporter des charges tendant à s’allonger est appelée résistance ultime à la traction (UTS). La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence.

Voir aussi: Résistance des matériaux

Résistance à la traction ultime de l’Uranium

La résistance à la traction ultime de l’uranium est de 390 MPa.

Limite d’élasticité de l’Uranium

La limite d’élasticité de l’uranium est de 190 MPa.

Module de Young de l’Uranium

Le module de Young de l’uranium est de 190 MPa.

Dureté de l’Uranium

En science des matériaux, la dureté est la capacité à résister à l’indentation de surface (déformation plastique localisée) et  aux rayuresLe test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un pénétrateur sphérique dur  est forcé sous une charge spécifique dans la surface du métal à tester.

La dureté Brinell de l’uranium est d’environ 2400 MPa.

La méthode d’essai de dureté Vickers a été développée par Robert L. Smith et George E. Sandland chez Vickers Ltd comme alternative à la méthode Brinell pour mesurer la dureté des matériaux. La méthode d’essai de dureté Vickers peut également être utilisée comme méthode d’essai de microdureté, qui est principalement utilisée pour les petites pièces, les sections minces ou les travaux en profondeur.

La dureté Vickers de l’uranium est d’environ 1960 MPa.

La dureté à la rayure est la mesure de la résistance d’un échantillon à la déformation plastique permanente due au frottement d’un objet pointu. L’échelle la plus courante pour ce test qualitatif est l’échelle de Mohs, qui est utilisée en minéralogie. L’ échelle de Mohs de dureté minérale est basée sur la capacité d’un échantillon naturel de minéral à rayer visiblement un autre minéral.

L’uranium a une dureté d’environ 6.

Voir aussi : Dureté des matériaux

Uranium – Structure cristalline

Une structure cristalline possible de l’uranium est la structure  orthorhombique.

structures cristallines - FCC, BCC, HCP

Dans les métaux et dans de nombreux autres solides, les atomes sont disposés en réseaux réguliers appelés cristaux. Un réseau cristallin est un motif répétitif de points mathématiques qui s’étend dans tout l’espace. Les forces de la liaison chimique provoquent cette répétition. C’est ce motif répété qui contrôle les propriétés telles que la résistance, la ductilité, la densité, la conductivité (propriété de conduire ou de transmettre la chaleur, l’électricité, etc.) et la forme. Il existe 14 types généraux de ces modèles connus sous le nom de réseaux de Bravais.

Voir aussi: Structure cristalline des matériaux

Structure cristalline de l’Uranium
La structure cristalline de l'uranium est : orthorhombique

Force des éléments

Élasticité des éléments

Dureté des éléments

Propriétés thermiques de l’Uranium

Uranium-fusion-point-conductivité-thermique-propriétés

Uranium – Point de fusion et point d’ébullition

Le point de fusion de l’uranium est de 1132°C.

Le point d’ébullition de l’uranium est de 4131°C.

Notez que ces points sont associés à la pression atmosphérique standard.

Uranium – Conductivité thermique

La conductivité thermique de l’uranium est de 27  W/(m·K).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductivité thermique, k (ou λ), mesurée en W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par conduction. Notez que la loi de Fourier s’applique à toute matière, quel que soit son état (solide, liquide ou gazeux), par conséquent, elle est également définie pour les liquides et les gaz.

Coefficient de dilatation thermique de l’Uranium

Le coefficient de dilatation thermique linéaire de l’uranium est  de 13,9 µm/(m·K)

La dilatation thermique est généralement la tendance de la matière à changer ses dimensions en réponse à un changement de température. Il est généralement exprimé sous la forme d’un changement fractionnaire de longueur ou de volume par unité de changement de température.

Uranium – Chaleur spécifique, chaleur latente de fusion, chaleur latente de vaporisation

La chaleur spécifique de l’uranium est de 0,12 J/g K.

La capacité calorifique  est une propriété extensive de la matière, c’est-à-dire qu’elle est proportionnelle à la taille du système. La capacité thermique C  a l’unité d’énergie par degré ou d’énergie par kelvin. Lors de l’expression du même phénomène en tant que propriété intensive, la capacité thermique est divisée par la quantité de substance, de masse ou de volume, ainsi la quantité est indépendante de la taille ou de l’étendue de l’échantillon.

La chaleur latente de fusion de l’uranium est de 8,52 kJ/mol.

La chaleur latente de vaporisation de l’uranium est de 417 kJ/mol.

La chaleur latente est la quantité de chaleur ajoutée ou retirée d’une substance pour produire un changement de phase. Cette énergie décompose les forces attractives intermoléculaires, et doit également fournir l’énergie nécessaire pour dilater le gaz (le pΔV travail). Lorsque la chaleur latente est ajoutée, aucun changement de température ne se produit. L’enthalpie de vaporisation est fonction de la pression à laquelle cette transformation a lieu.

Point de fusion des éléments

Tableau périodique des éléments - point de fusion

Conductivité thermique des éléments

Tableau périodique des éléments - conductivité thermique

Dilatation thermique des éléments

Tableau périodique des éléments - dilatation thermique

Capacité calorifique des éléments

Tableau périodique des éléments - capacité calorifique

Chaleur de fusion des éléments

Tableau périodique des éléments - fusion par chaleur latente

Chaleur de vaporisation des éléments

Tableau périodique des éléments - vaporisation de la chaleur latente

Uranium – Résistivité électrique – Susceptibilité magnétique

Uranium-résistivité-électrique-susceptibilité-magnétique

La propriété électrique fait référence à la réponse d’un matériau à un champ électrique appliqué. L’une des principales caractéristiques des matériaux est leur capacité (ou leur incapacité) à conduire le courant électrique. En effet, les matériaux sont classés selon cette propriété, c’est-à-dire qu’ils sont divisés en conducteurs, semi-conducteurs et non-conducteurs.

Voir aussi:  Propriétés électriques

La propriété magnétique fait référence à la réponse d’un matériau à un champ magnétique appliqué. Les propriétés magnétiques macroscopiques d’un matériau sont une conséquence des interactions entre un champ magnétique extérieur et les moments dipolaires magnétiques des atomes qui le constituent. Différents  matériaux réagissent différemment à l’application du champ magnétique .

Voir aussi:  Propriétés magnétiques

Résistivité électrique de l’Uranium

La résistivité électrique de l’Uranium est de  280 nΩ⋅m.

La conductivité électrique et son inverse, la résistivité électrique, est une propriété fondamentale d’un matériau qui quantifie la manière dont l’uranium conduit le flux de courant électrique. La conductivité électrique ou conductance spécifique est l’inverse de la résistivité électrique.

Susceptibilité magnétique de l’Uranium

La susceptibilité magnétique de l’uranium est  N/A.

En électromagnétisme, la susceptibilité magnétique est la mesure de l’aimantation d’une substance. La susceptibilité magnétique est un facteur de proportionnalité sans dimension qui indique le degré d’aimantation de l’uranium en réponse à un champ magnétique appliqué.

Résistivité électrique des éléments

Tableau périodique des éléments - résistivité électrique

Susceptibilité magnétique des éléments

Application et prix des autres éléments

Uranium - Comparaison des propriétés et des prix

Tableau périodique en résolution 8K

Autres propriétés de l’Uranium